首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential regulation of waxy gene expression in rice endosperm   总被引:36,自引:0,他引:36  
Summary In order to examine the effects of different alleles on the gene expression at the waxy locus, the Wx gene product which controls the synthesis of amylose was isolated from endosperm starch of rice plants and analysed by electrophoretic techniques. The major protein bound to starch granules was absent in most of waxy strains and increased with the number of Wx alleles in triploid endosperms, suggesting that the major protein is the Wx gene product. In addition to wx alleles which result in the absence or drastic reduction of the Wx gene product and amylose, differentiation of Wx alleles seemed to have occurred among nonwaxy rice strains. At least two Wx alleles with different efficiencies in the production of the major protein as well as amylose were detected. These alleles are discussed in relation to regulation of the gene expression.  相似文献   

2.
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt‐stress‐tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3‐O‐methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.  相似文献   

3.
4.
5.
阳成伟  陈贻竹  彭长连 《广西植物》2002,22(6):534-536-536
经ABA处理的水稻幼苗叶片和对照相比 ,PSII光化学效率 (Fv/Fm)和非光化学猝灭系数 (qN)显著受抑制。经高光处理 1h后 ,ABA处理的水稻幼苗叶片光抑制程度比对照小 ,这暗示ABA对高光光抑制具有一定的光保护作用 ,且间接表明ABA提高水稻幼苗抗光抑制的能力与叶黄素循环密切相关。  相似文献   

6.
Rice endosperm UDP-glucose pyrophosphorylase (UGPase) cDNA clones were isolated by screening a lambda ZAP II library prepared from poly (A(+)) RNA of japonica rice (cv Sasanishiki) endosperm with a probe of potato UGPase cDNA. One cDNA clone, possessing about 1,700 nucleotides, contained the complete open reading frame of rice UGPase. At the nucleotide-sequence level, the UGPase cDNA of rice endosperm had high homology with the UGPase cDNA of barley endosperm (84%) and potato tuber (71%). The calculated molecular weight (50 kDa) agrees with the value determined by SDS-PAGE (51 kDa). At the amino-acid sequence level, rice UGPase has high homology with the UGPase of barley (92%) and potato (85%). The enzyme contained conserved sequence elements which are thought to be involved in substrate binding and catalytic activity. A Southern-blot analysis indicated that the gene existed as a single copy. Expression of the enzyme in rice endosperm examined by Northern-blot analysis was high at 10-15 days after heading.  相似文献   

7.
Developmental regulation of photosynthate distribution in leaves of rice   总被引:1,自引:0,他引:1  
mRNA expression patterns of genes for metabolic key enzymes sucrose phosphate synthase (SPS), phosphoenolpyruvate carboxylase (PEPC), pyruvate kinase, ribulose 1,5-bisphosphate carboxylase/oxygenase, glutamine synthetase 1, and glutamine synthetase 2 were investigated in leaves of rice plants grown at two nitrogen (N) supplies (N0.5, N3.0). The relative gene expression patterns were similar in all leaves except for 9th leaf, in which mRNA levels were generally depressed. Though increased N supply prolonged the expression period of each mRNA, it did not affect the relative expression intensity of any mRNA in a given leaf. SPS Vmax, SPS limiting and PEPC activities, and carbon flow were examined. The ratio between PEPC activity and SPS Vmax was higher in leaves developed at the vegetative growth stage (vegetative leaves: 5th and 7th leaves) than in leaves developed after the ear primordia formation stage (reproductive leaves: 9th and flag leaves). PEPC activity and SPS Vmax decreased with declining leaf N content. After using 14CO2 the 14C photosynthate distribution in the amino acid fraction was higher in vegetative than in reproductive leaves when compared for the same leaf N status. Thus, at high PEPC/SPS activities ratio, more 14C photosynthate was distributed to the amino acid pool, whereas at higher SPS activity more 14C was channelled into the saccharide fraction. Thus, leaf ontogeny was an important factor controlling photosynthate distribution to the N- or C-pool, respectively, regardless of the leaf N status.  相似文献   

8.
9.
In both yeast and mammals, the major constituent of the endosomal sorting complex required for transport-II (ESCRT-II) is the VPS22/EAP30 protein, which plays an important role in ubiquitin-mediated degradation of membrane proteins through the multivesicular body pathway. However, the functions of ESCRT-II subunits in plants are largely unknown. In this work, we report the genetic analysis and phenotypic characterization of mutants in OsVPS22 gene, which encodes a functional VPS22 homolog in rice. On the basis of a collection of T-DNA lines, we identified a T-DNA insertion mutant, which showed abnormal segregation ratios; we then found that the T-DNA insertion is located within the sixth intron of the OsVPS22 gene. Compared with the wild type, this vps22 mutant exhibited seedling lethality and severe reduction in shoot and root growth. In addition, the vps22 mutant had a chalky endosperm in the grain. In summary, our data suggest that OsVPS22 may be required for seedling viability and grain filling in rice, thus providing a valuable resource for further exploration of the functions of the ESCRTing machinery in plants.  相似文献   

10.
Mechanisms of drought tolerance are complex, interacting, and polygenic. This paper describes patterns of gene expression at precise physiological stages of drought in 35-day-old seedlings of Oryza sativa cv. Nipponbare. Drought was imposed gradually for up to 15 days, causing abscisic acid levels to rise and growth to cease, and plants were then re-watered. Proteins were identified from leaf samples after moderate drought, extreme drought, and 3 and 6 days of re-watering. Label-free quantitative shotgun proteomics resulted in identification of 1548 non-redundant proteins. More proteins were down-regulated in early stages of drought but more were up-regulated as severe drought developed. After re-watering, there was notable down regulation, suggesting that stress-related proteins were being degraded. Proteins involved in signalling and transport became dominant as severe drought took hold but decreased again on re-watering. Most of the nine aquaporins identified were responsive to drought, with six decreasing rapidly in abundance as plants were re-watered. Nine G-proteins appeared in large amounts during severe drought and dramatically degraded once plants were re-watered. We speculate that water transport and drought signalling are critical elements of the overall response to drought in rice and might be the key to biotechnological approaches to drought tolerance.  相似文献   

11.
12.
OREB1 is a rice ABRE binding factor characterized by the presence of multiple highly-conserved phosphorylation domains (C1, C2, C3, and C4) and two kinase recognition motifs, RXXS/T and S/TXXE/D, within different functional domains. An in vitro kinase assay showed that OREB1 is phosphorylated not only by the SnRK2 kinase, but also by other Ser/Thr protein kinases, such as CaMKII, CKII, and SnRK3. Furthermore, the N-terminal phosphorylation domain C1 was found to be differentially phosphorylated by the SnRK2/SnRK3 kinase and by hyperosmotic/cold stress, suggesting that the C1 domain may function in decoding different signals. The phosphorylation-mediated regulation of OREB1 activity was investigated through mutation of the SnRK2 recognition motif RXXS/T within each phosphorylation module. OREB1 contains a crucial nine-amino acid transactivation domain located near the phosphorylation module C1. Deletion of the C1 domain increased OREB1 activity, whereas mutation of Ser 44, Ser 45, and Ser 48 of the C1 domain to aspartates decreased OREB1 activity. In the C2 domain, a double mutation of Ser 118 and Ser 120 to alanines suppressed OREB1 activity. These findings strongly suggest that selective phosphorylation of the C1 or C2 modules may positively or negatively regulate OREB1 transactivation. In addition, mutation of Ser 385 of the C4 domain to alanines completely abolished the interaction between OREB1 and a rice 14-3-3 protein, GF14d, suggesting that SnRK2-mediated phosphorylation may regulate this interaction. These results indicate that phosphorylation domains of OREB1 are not functionally redundant and regulate at least three different functions, including transactivation activity, DNA binding, and protein interactions. The multisite phosphorylation of OREB1 is likely a key for the fine control of its activity and signal integration in the complex stress signaling network of plant cells.  相似文献   

13.
Previous investigations of plant responses to higher CO 2 levels were mostly based on physiological measurements and biochemical assays. In this study, a proteomic approach was employed to investigate plant response to higher CO 2 levels using rice as a model. Ten-day-old seedlings were progressively exposed to 760 ppm, 1140 ppm, and 1520 ppm CO 2 concentrations for 24 h each. The net photosynthesis rate ( P n), stomatal conductance ( G s), transpiration rate ( E), and intercellular to ambient CO 2 concentration ratio ( C i/ C a) were measured. P n, G s, and E showed a maximum increase at 1140 ppm CO 2, but further exposure to 1520 ppm for 24 h resulted in down regulation of these. Proteins extracted from leaves were subjected to 2-DE analysis, and 57 spots showing differential expression patterns, as detected by profile analysis, were identified by MALDI-TOF/TOF-MS. Most of the proteins belonged to photosynthesis, carbon metabolism, and energy pathways. Several molecular chaperones and ascorbate peroxidase were also found to respond to higher CO 2 levels. Concomitant with the down regulation of P n and G s, the levels of enzymes of the regeneration phase of the Calvin cycle were decreased. Correlations between the protein profiles and the photosynthetic measurements at the three CO 2 levels were explored.  相似文献   

14.
Identification of early senescence-associated genes in rice flag leaves   总被引:3,自引:0,他引:3  
Liu L  Zhou Y  Zhou G  Ye R  Zhao L  Li X  Lin Y 《Plant molecular biology》2008,67(1-2):37-55
Leaf senescence is one of the key stages of plant leaf development. It is a highly complex but ordered process involving expression of large scale senescence associated genes, and its molecular mechanisms still remain unclear. By using suppression subtractive hybridization, 815 ESTs that are up-regulated at the onset of rice flag leaf senescence have been isolated. A total of 533 unigenes have been confirmed by macroarray detection and sequencing. 183 of these unigenes have GO annotations, involved in macromolecule metabolism, protein biosynthesis regulation, energy metabolism, gene expression regulations, detoxification, pathogenicity and stress, cytoskeleton organization and flower development. Another 121 unigenes co-localized with previously reported known stay-green QTLS. RT-PCR analysis on the other novel genes indicated that they can be up-regulated in natural early senescence and induced by hormone. Our results indicate that senescence is closely related to various metabolic pathways, thus providing new insight into the onset of leaf senescence mechanism. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Hydrogen peroxide (H2O2) plays a dual role in plants as the toxic by-product of normal cell metabolism and as a regulatory molecule in stress perception and signal transduction. However, a clear inventory as to how this dual function is regulated in plants is far from complete. In particular, how plants maintain survival under oxidative stress via adjustments of the intercellular metabolic network and antioxidative system is largely unknown. To investigate the responses of rice seedlings to H2O2 stress, changes in protein expression were analyzed using a comparative proteomics approach. Treatments with different concentrations of H2O2 for 6 h on 12-day-old rice seedlings resulted in several stressful phenotypes such as rolling leaves, decreased photosynthetic and photorespiratory rates, and elevated H2O2 accumulation. Analysis of approximately 2000 protein spots on each two-dimensional electrophoresis gel revealed 144 differentially expressed proteins. Of them, 65 protein spots were up-regulated, and 79 were down-regulated under at least one of the H2O2 treatment concentrations. Furthermore 129 differentially expressed protein spots were identified by mass spectrometry to match 89 diverse protein species. These identified proteins are involved in different cellular responses and metabolic processes with obvious functional tendencies toward cell defense, redox homeostasis, signal transduction, protein synthesis and degradation, photosynthesis and photorespiration, and carbohydrate/energy metabolism, indicating a good correlation between oxidative stress-responsive proteins and leaf physiological changes. The abundance changes of these proteins, together with their putative functions and participation in physiological reactions, produce an oxidative stress-responsive network at the protein level in H2O2-treated rice seedling leaves. Such a protein network allows us to further understand the possible management strategy of cellular activities occurring in the H2O2-treated rice seedling leaves and provides new insights into oxidative stress responses in plants.  相似文献   

16.
17.
18.
Experiments were conducted to identify the differentially expressed proteins in rice (Oryza sativa L.) plants after treatment with the glycoprotein elicitor CSB I, purified from ZC13, a race of the rice blast fungus Magnaporthe grisea. The interactions of two near isogenic lines of rice, C101A51 and CO39, with ZC13 resulted in completely incompatible and compatible types, respectively. Proteins were extracted from rice leaves at 12 and 24 h after treatment with CSB I. Temporal changes in total proteins were examined using 2‐DE. Among more than 900 protein spots reproducibly detected on each gel, 11 were up‐regulated, three were down‐regulated and seven were newly induced during, at a minimum, one time point. Twenty‐one differentially expressed proteins were identified by linear ion trap quadrupole (LTQ)‐MS/MS. The identified proteins were classified into six categories based on their putative function reported: (i) defense proteins (PR‐10a, PR‐5 and putative salt‐induced protein), (ii) signal transduction (nucleoside diphosphate kinase and putative profilin), (iii) ROS (Mn‐SOD, Cu/Zn‐SOD, GST and CAT), (iv) programmed cell death (translationally controlled tumor protein), (v) molecule biosynthesis (putative ribosomal protein S5, putative ribosomal protein L12, putative translational elongation factor Tu and putative chaperonin 21 precursor) and (vi) metabolism (putative fructose‐bisphosphate aldolase class‐I, putative malate dehydrogenase, cytoplasmic malate dehydrogenase, putative acid phosphatase, putative transketolase1 and gamma hydroxybutyrate dehydrogenase‐like protein). All of these proteins (except Cu/Zn‐SOD, putative acid phosphatase and translationally controlled tumor protein) were induced faster and to a higher degree in C101A51 than in CO39. These data suggest that the incompatible rice line may possess a more sensitive recognition system that can identify and react to specific chemical, biological or physical triggers in a more efficient manner, thus eliciting an early and fast defense response.  相似文献   

19.
20.
Cellular oxalate, widely distributed in many plants, is implicated to play important roles in various functions and is also known to affect food qualities adversely in fruits and vegetables. How oxalate is regulated in plants is currently not well understood. Glycolate oxidase (GLO) has long been considered as an important player in oxalate accumulation in plants. To gain further insight into the biochemical and molecular mechanisms, the possible roles of GLO in the process were studied. Drastically different levels of oxalate could be achieved by treating rice with various nitrogen forms (nitrate versus ammonium). While nitrate stimulated oxalate accumulation, ammonium reduced its level. Such treatments resulted in similar pattern changes for some other related organic acids, such as glycolate, oxaloacetate, and malate. By feeding plants with exogenous glycolate it was possible almost completely to restore the ammonium-decreased oxalate level. Under the two treatments few differences were observed for GLO mRNA levels, protein levels, and in vitro activities. Both K(m) for glycolate/glyoxylate and K(i) for oxalate remained almost the same for GLO purified from either nitrate- or ammonium-fed leaves. A further in vivo study, with transgenic plants carrying an estradiol-inducible GLO antisense gene, showed that, while the estradiol-induced antisense expression remarkably reduced both GLO protein levels and activities, oxalate levels were not significantly altered in the estradiol-treated transgenic plants. Taken together, it is suggested that oxalate accumulation and regulation is independent of GLO in rice leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号