首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increases in liver glycogen phosphorylase activity, along with inhibition of glycogen synthetase and phosphofructokinase-1, are associated with elevated cryoprotectant (glucose) levels during freezing in some freeze-tolerant anurans. In contrast, freeze-tolerant chorus frogs, Pseudacris triseriata, accumulate glucose during freezing but exhibit no increase in phosphorylase activity following 24-h freezing bouts. In the present study, chorus frogs were frozen for 5- and 30-min and 2- and 24-h durations. After freezing, glucose, glycogen, and glycogen phosphorylase and synthetase activities were measured in leg muscle and liver to determine if enzyme activities varied over shorter freezing durations, along with glucose accumulation. Liver and muscle glucose levels rose significantly (5-12-fold) during freezing. Glycogen showed no significant temporal variation in liver, but in muscle, glycogen was significantly elevated after 24 h of freezing relative to 5 and 30 min-frozen treatments. Hepatic phosphorylase a and total phosphorylase activities, as well as the percent of the enzyme in the active form, showed no significant temporal variation following freezing. Muscle phosphorylase a activity and percent active form increased significantly after 24 h of freezing, suggesting some enhancement of enzyme function following freezing in muscle. However, the significance of this enhanced activity is uncertain because of the concurrent increase in muscle glycogen with freezing. Neither glucose 6-phosphate independent (I) nor total glycogen synthetase activities were reduced in liver or muscle during freezing. Thus, chorus frogs displayed typical cryoprotectant accumulation compared with other freeze-tolerant anurans, but freezing did not significantly alter activities of hepatic enzymes associated with glycogen metabolism.  相似文献   

2.
The wood frog (Rana sylvatica) exhibits a well-developed natural anoxia and dehydration tolerance. The degree of stress tolerance depends on numerous biochemical adaptations, including stress-induced hypometabolism that helps to preserve long-term viability by reducing ATP demand. We hypothesized that the mechanisms involved in cell cycle control could act to aid in the establishment of the hypometabolic state required for stress survival. Selected proteins involved in the proliferation of cells were evaluated using immunoblotting in liver and skeletal muscle of wood frogs comparing controls with animals subjected to either 24-hr anoxia exposure under a nitrogen gas atmosphere or dehydration to 40% of total body water lost (all at 5°C). Levels of cyclins (type A, B, D, and E) decreased significantly under both stresses in liver and skeletal muscle. Similar reductions were seen for Cyclin-dependant kinases (Cdk) types 2, 4, and 6 in both liver and skeletal muscle; however, an increase in the relative amount of phosphorylated inactive p-Cdk (Thr14/Tyr15) was observed in liver under both stresses. Levels of positive regulators of Cdk activity (Cdc25 type A and C) were significantly reduced in both tissues under both stresses, whereas negative regulators of Cdk activity (p16(INK4a) and p27(KIP1) ) increased significantly in liver under both anoxia and dehydration stress (but not in muscle). This study provides the first report of differential regulation of cell cycle components in an anoxia and dehydration tolerant vertebrate, the wood frog, suggesting that cell cycle suppression is an active part of stress resistance and life extension in hypometabolic states.  相似文献   

3.
The effects of whole body dehydration (up to 40% of total body water lost) or anoxia exposure (up to 2 days under N2 gas) at 5 °C on tissue levels of adenosine 3′–5′ cyclic monophosphate (cAMP) and the percentage of cAMP-dependent protein kinase present as the free catalytic subunit (PKAc), as well as the levels of the protein kinase C (PKC) second messenger, inositol 1,4,5-trisphosphate (IP3), were assessed in two anurans, the freeze-tolerant wood frog, Rana sylvatica, and the freeze-intolerant leopard frog, Rana pipiens. Dehydration of wood frogs resulted in a rapid elevation of liver cAMP and PKAc; cAMP was 3.4-fold greater than control values in animals that had lost 5% of total body water, whereas PKAc was elevated threefold in 20% dehydrated frogs. These results indicate protein kinase A mediation of the liver glycogenolysis and hyperglycemia that is induced by dehydration in this species. Skeletal muscle PKAc content also rose with dehydration but neither cAMP nor PKAc was affected by dehydration in leopard frog tissues. Anoxia exposure had different effects on signal transduction systems. PKAc was elevated after 1 h anoxia in R. sylvatica brain and was sustained over time but the enzyme was unaffected in other organs; by contrast, R. pipiens showed variable responses by PKAc to anoxia in three organs. Both species showed rapid (within 30 min) and large (3 to 7.8-fold) increases in IP3 in liver of anoxic frogs that decreased slowly with continued anoxia. IP3 also increased quickly in heart of anoxia-exposed wood frogs. This suggests that PKC may mediate various metabolic adjustments that promote hypoxia/anoxia resistance such as coordinating metabolic rate depression. A progressive rise in liver IP3 during dehydration in wood frogs (reaching fourfold higher than controls in 40% dehydrated animals) may also mediate similar hypoxia resistance adaptations under this stress since anurans experience progressive hypoxia due to increased blood viscosity when water loss reaches high values. The patterns of second messenger and PKAc changes in wood frog liver during dehydration closely parallel the changes seen in these same parameters during natural freezing suggesting that the freeze tolerance of selected terrestrially hibernating anurans may have evolved out of various anuran mechanisms of dehydration resistance. Accepted: 2 January 1997  相似文献   

4.
The myosin-bound form of protein phosphatase 1 (PP-1M) and the glycogen-bound form (PP-1G) together account for virtually all the phosphatase activity in rabbit skeletal muscle extracts towards native myosin. PP-1M has a 3-fold higher activity towards native myosin than does PP-1G and accounts for at least 60% of the myosin phosphatase activity in rabbit skeletal muscle. PP-1M accounts for 90% of the myosin phosphatase activity in bovine cardiac muscle, where PP-1G is essentially absent. The high activity of PP-1M towards native myosin appears to arise from interaction of the catalytic subunit with the putative myosin-binding subunit, since chymotryptic digestion liberates a catalytic subunit having the same characteristics as that released by limited proteolysis of PP-1G. Protein phosphatase 2A in skeletal and cardiac muscles is very active towards the isolated myosin P-light chain, but ineffective in dephosphorylating native myosin. The results suggest that PP-1M is the enzyme that dephosphorylates myosin in skeletal and cardiac muscle.  相似文献   

5.
Freeze tolerance in the frog Rana sylvatica is supported by nonanticipatory mobilization of cryoprotectant (glucose) and redistribution of organ water. Other freeze-tolerant frogs may manifest these responses but differences exist. For example, the gray treefrog (Hyla versicolor) accumulates mostly glycerol as opposed to glucose. The current study reports additional novel features about cryoprotection in H. versicolor. Frogs were acclimated to low temperature for 12 weeks and frozen for 3 days at -2.4 degrees C. Some frogs were then thawed at 3 degrees C for 4 hr. Calorimetry revealed that frozen frogs had 53.9% +/- 11.1% of their body water in ice, and all frogs recovered following this procedure. Plasma glucose was low prior to the onset of freezing (1.1 +/- 0.9 micromol/ml) and it was 20x higher in postfreeze frogs. Constituting nearly 30% of plasma solute, glycerol was 117.2 +/- 13.6 micromol/ml prior to freezing and it remained equally high in postfreeze frogs. Liver water content was moderately lower in frozen frogs when compared to controls (62.9% +/- 3.7% vs. 68.6% +/- 1.7%), whereas postfreeze frogs excessively hydrated their livers (75.7% +/- 2.1%). Less-pronounced changes were seen in muscle water content. H. versicolor can mobilize its major cryoprotectant, glycerol, in response to extended cold acclimation, which is unique in comparison to other freeze-tolerant frogs, and it experiences only moderate organ dehydration during freezing. This species conforms with other freeze-tolerant frogs, however, by mobilizing glucose as a direct response to tissue freezing.  相似文献   

6.
Abnormal phosphorylation of microtubule-associated protein tau plays a critical role in Alzheimer's disease (AD), together with a distinct decrease of energy metabolism in the affected brain regions. To explore the effect of acute energy crisis on tau phosphorylation and the underlying mechanisms, we incubated rat brain slices in artificial cerebrospinal fluid (aCSF) at 37 degrees C with or without an oxygen supply, or in aCSF with low glucose concentrations. Then, the levels of total, phosphorylated and unphosphorylated tau, as well as the activities and levels of protein phosphatase (PP)-1, PP-2A, glycogen synthase kinase 3 (GSK-3), extracellular signal-regulated protein kinase (ERK) and C-jun amino terminal kinase (JNK), were measured. It was found, unexpectedly, that tau was significantly dephosphorylated at Ser396/Ser404 (PHF-1), Ser422 (R145), Ser199/Ser202 (Tau-1), Thr181 (AT270), Ser202/Thr205 (AT8) and Thr231 (AT180) by acute anoxia for 30 min or 120 min. The activity of PP-2A and the level of dephosphorylated PP-2A catalytic subunit at tyrosine 307 (Tyr307) were simultaneously increased. The active forms of ERK1/2 and JNK1/2 were decreased under anoxic incubation. The PP-2A inhibitor, okadaic acid (OA, 0.75 microm), completely prevented tau from acute anoxia-induced dephosphorylation and restored the active forms of ERK1/2 and JNK1/2 to the control level. The activities and protein levels of GSK-3 and PP-1 showed no change during acute anoxia. These data suggest that acute anoxia induces tau dephosphorylation, and that PP-2A may play a key role in tau dephosphorylation induced by acute anoxia.  相似文献   

7.
8.
9.
10.
It has been hypothesized that freeze-tolerance in anurans evolved from a predisposition for dehydration tolerance. To test this hypothesis, we dehydrated summer/fall-collected and winter acclimated freeze-tolerant chorus frogs and dehydration-tolerant, but freeze-intolerant, Woodhouse's and Great Plains toads to 25% and 50% body water loss (BWL). Following treatments, we measured glucose, glycogen, and glycogen phosphorylase and glycogen synthetase (summer/fall only) activities in liver and leg muscle. Hepatic glucose levels were not significantly altered by dehydration in either summer/fall-collected frogs or toads. Conversely, winter acclimated frogs did show an increment (2.9-fold) in hepatic glucose with dehydration, accompanied by a reduction in hepatic glycogen levels. Winter acclimated toads did not mobilize hepatic glucose in response to dehydration. Further, hepatic glycogen and phosphorylase activities did not vary in any consistent manner with dehydration in winter toads. Mean leg muscle glucose values were elevated at 50% BWL relative to other treatments, significantly so compared to 25% BWL for summer/fall-collected frogs. The pattern of hepatic glucose mobilization with dehydration in winter frogs is consistent with that in other freeze-tolerant frog species, and provides additional support for the hypothesis that freezing tolerance evolved from a capacity for dehydration tolerance. However, the lack of hepatic glucose mobilization in response to dehydration in fall frogs suggests that a seasonal component to dehydration-induced regulation of glucose metabolism exists in chorus frogs. Furthermore, the absence of a dehydration-induced mobilization of hepatic glucose at both seasons in toads suggests that this dehydration response is not universal for terrestrial anurans.  相似文献   

11.
12.
Third-instar larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae) from populations in northern North America transition from freeze-susceptible to freeze-tolerant just prior to the onset of winter. While studies have documented the accumulation of carbohydrate cryoprotectants during this transition, protein cryoprotectants common to other freeze-tolerant species have not been reported in the gall fly. Using larvae collected from a population in Madison County, NY, which changes from freeze-susceptible to freeze-tolerant in early October, we assayed for the presence of factors that could preserve the catalytic activity of the cold-labile enzyme, rabbit muscle lactate dehydrogenase. Freezing this enzyme with a heat-stable, hydrophilic fraction derived from homogenates of both freeze-tolerant larvae and those in the process of becoming freeze-tolerant preserved between 70% and 80% of this enzyme's activity. Neither a comparable solution of bovine serum albumin nor the naturally-occurring carbohydrates (glycerol, sorbitol, or trehalose) conferred this level of cryoprotection. The putative cryoprotective protein from gall fly larvae did not bind to a weak anion exchanger, implying that its character may be cationic.  相似文献   

13.
14.
The wood frog, Rana sylvatica, survives weeks of whole body freezing during winter hibernation, expressing numerous metabolic adaptations that deal not only with freezing but with its consequences including organ ischemia and cellular dehydration. The present study analyzes the 20s multicatalytic proteinase (MCP) complex from skeletal muscle to determine how protein degradation is managed in the ischemic frozen state. MCP was partially purified and assayed fluorometrically using three AMC-labeled substrates to compare multiple states: control (5 degrees C acclimated), 24 h frozen at -2.5 degrees C, 4 or 8 h thawed at 5 degrees C, 8 h anoxia, and 40% dehydration. MCP from frozen frogs showed significantly different K(m) and V(max) values compared with controls; e.g., K(m) Z-LLE-AMC increased by 45% during freezing and 52% under anoxia whereas V(max) decreased by 40%. After thawing, K(m) was restored and V(max) rose by 2.2-fold. Incubations promoting protein kinase or phosphatase action on MCP showed that phosphatase treatment strongly increased V(max) implicating reversible phosphorylation in MCP regulation during freeze-thaw. Western blotting showed a 36% decrease in MCP protein in muscle from frozen frogs. The 20s MCP preferentially degrades oxidatively-damaged proteins and evidence of impaired function during freezing came from a 1.4-fold increase in protein carbonyl content in muscle and liver during freezing. Ubiquitin and ubiquitin conjugate levels were unchanged in muscle but changed markedly in liver during freeze-thaw.  相似文献   

15.
Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating glo- bal suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at 6 °C for 24 h (P < 0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P < 0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia.  相似文献   

16.
The purpose of this work was to evaluate the response of the antioxidant system of goldfish Carassius auratus during anoxia and reoxygenation. The exposure of goldfish to 8 h of anoxia induced a 14% decrease in total glutathione levels in the kidney, although the liver, brain, and muscle were unaffected. Anoxia also resulted in increases in the activities of liver catalase, brain glucose-6-phosphate dehydrogenase, and brain glutathione peroxidase (by 38, 26, and 79%, respectively) and a decrease in kidney catalase activity (by 17.5%). After 14 h of reoxygenation, liver catalase and brain glutathione peroxidase activities remained higher than controls and several other tissue-specific changes occurred in enzyme activities. Superoxide dismutase activity was unaffected by anoxia and reoxygenation. The levels of conjugated dienes, as indicators of lipid peroxidation, increased by 114% in liver after 1 h of reoxygenation and by 75% in brain after 14 h of reoxygenation. Lipid peroxidation was unaffected in kidney and depressed during anoxia and reoxygenation (by 44-61%) in muscle. Regulation of the goldfish antioxidant system during anoxia may constitute a biochemical mechanism that minimizes oxidative stress following reoxygenation.  相似文献   

17.
Recent studies have shown that trehalose plays a protective role in yeast in a variety of stresses, including heat, freezing and thawing, dehydration, hyperosmotic shock, and oxidant injury. Because (a) heat shock and anoxia share mechanisms that allow organisms to survive, (b) Drosophila melanogaster is tolerant to anoxia, and (c) trehalose is present in flies and is metabolically active, we asked whether trehalose can protect against anoxic stress. Here we report on a new role of trehalose in anoxia resistance in Drosophila. We first cloned the gene trehalose-6-phosphate synthase (tps1), which synthesizes trehalose, and examined the effect of tps1 overexpression as well as mutation on the resistance of Drosophila to anoxia. Upon induction of tps1, trehalose increased, and this was associated with increased tolerance to anoxia. Furthermore, in vitro experiments showed that trehalose reduced protein aggregation caused by anoxia. Homozygous tps1 mutant (P-element insertion into the third intron of the gene) leads to lethality at an early larval stage, and excision of the P-element rescues totally the phenotype. We conclude that trehalose contributes to anoxia tolerance in flies; this protection is likely to be due to a reduction of protein aggregation.  相似文献   

18.
Select hepatic changes in the freeze-tolerant hatchling turtle, Chrysemys picta marginata, were studied in response to freezing at -2.5 degrees C and thawing. Upon freezing, a small, selective increase in the liver weight with no increase in body weight was seen suggestive of an hepatic capacitance response. In all turtles studies, lobular differences in the hepatic content of glycogen were evident: the smaller lobe contained twice as much glycogen as the larger lobe. The response to freezing and thawing was comparable. Total hepatic glycogen levels of turtles were reduced approximately 60 per cent from control levels in the frozen state and recovered to >80 per cent of control levels in the thawed state. Compared to the control state, turtle blood glucose levels were: unchanged after 12 h in the cool state; reduced 28 per cent after 24 h and increased two-fold after 48 h in the frozen state; and increased 4.5-fold in the thawed state. Thus, changes in hepatic glycogen metabolism occur without large changes in blood glucose levels. In turtle liver plasma membranes, the hepatic alpha(1)-adrenergic receptor was barely detectable and did not change. The beta(2)-adrenergic receptor was expressed at high levels and, compared to control levels, was: unchanged after 12 h in the cool state; reduced 20 per cent after 24 h and 40 per cent after 48 h in the frozen state. On thawing, this receptor was 50 per cent of control levels. While catecholamines working through the beta(2)-adrenergic receptor may effect early hepatic glycogen breakdown in response to freezing, other factors must be involved to complete the process. The plasma membrane-bound enzyme gamma-glutamyltranspeptidase displayed a different pattern of changes indicative of selective modulation: it was increased 2.7-fold over control levels in the cool state; unchanged in the frozen state; and increased 1.8-fold in the thawed state. The activity of the kidney enzyme was decreased in the cool state and slightly increased in the frozen and thawed states emphasizing the tissue-specific nature of the changes in the activity of gamma-glutamyltranspeptidase in response to freezing and thawing. The similarities and differences of the hepatic changes in response to freezing and thawing in the freeze-tolerant hatchling turtle to those we have previously reported for the freeze-tolerant frog are discussed.  相似文献   

19.
The protein B-50 is dephosphorylated in rat cortical synaptic plasma membranes (SPM) by protein phosphatase type 1 and 2A (PP-1 and PP-2A)-like activities. The present studies further demonstrate that B-50 is dephosphorylated not only by a spontaneously active PP-1-like enzyme, but also by a latent form after pretreatment of SPM with 0.2 mM cobalt/20 micrograms of trypsin/ml. The activity revealed by cobalt/trypsin was inhibited by inhibitor-2 and by high concentrations (microM) of okadaic acid, identifying it as a latent form of PP-1. In the presence of inhibitor-2 to block PP-1, histone H1 (16-64 micrograms/ml) and spermine (2 mM) increased B-50 dephosphorylation. This sensitivity to polycations and the reversal of their effects on B-50 dephosphorylation by 2 nM okadaic acid are indicative of PP-2A-like activity. PP-1- and PP-2A-like activities from SPM were further displayed by using exogenous phosphorylase alpha and histone H1 as substrates. Both PP-1 and PP-2A in rat SPM were immunologically identified with monospecific antibodies against the C-termini of catalytic subunits of rabbit skeletal muscle PP-1 and PP-2A. Okadaic acid-induced alteration of B-50 phosphorylation, consistent with inhibition of protein phosphatase activity, was demonstrated in rat cortical synaptosomes after immunoprecipitation with affinity-purified anti-B-50 immunoglobulin G. These results provide further evidence that SPM-bound PP-1 and PP-2A-like enzymes that share considerable similarities with their cytosolic counterparts may act as physiologically important phosphatases for B-50.  相似文献   

20.
Chekanov  K.  Vasilieva  S.  Solovchenko  A.  Lobakova  E. 《Photosynthetica》2018,56(4):1268-1277

The microalga Haematococcus pluvialis is a biotechnologically important microorganism producing a ketocarotenoid astaxanthin. Haematococcus exists either as metabolically active vegetative cells with a high chlorophyll content or astaxanthin-rich haematocysts (aplanospores). This microalga featuring outstanding tolerance to a wide range of adverse conditions is a highly suitable model for studies of freezing tolerance in phototrophs. The retention of H. pluvialis cell viability after freezing–thawing is ascribed to elevated antioxidant enzyme activity and high ketocarotenoid content. However, we report that only haematocysts characterized by a lower photosynthetic activity were resistant to freezing–thawing even without cryoprotectant addition. The key factors of haematocyst freezing tolerance were assumed to be a low water content, rigid cell walls, reduction of the membranous structures, photosynthesis downregulation, and low chlorophyll content. Collectively, viability of Haematoccus after freezing–thawing can be improved by forcing the transition of vegetative cells to freeze-tolerant haematocysts before freezing.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号