首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

2.
Bruchid beetles infest various seeds. The seed coat is the first protective barrier against bruchid infestation. Although non-host seed coats often impair the oviposition, eclosion and survival of the bruchid Callosobruchus maculatus larvae, morphological and biochemical aspects of this phenomenon remain unclear. Here we show that Phaseolus vulgaris (non-host) seed coat reduced C. maculatus female oviposition about 48%, increased 83% the seed penetration time, reduced larval mass and survival about 62 % and 40 % respectively. Interestingly, we found no visible effect on the major events of insect embryogenesis, namely the formation of the cellular blastoderm, germ band extension/retraction, embryo segmentation, appendage formation and dorsal closure. Larvae fed on P. vulgaris seed coat have greater FITC fluorescence signal in the midgut than in the feces, as opposed to what is observed in control larvae fed on Vigna unguiculata. Cysteine protease, α-amylase and α-glucosidase activities were reduced in larvae fed on P. vulgaris natural seed coat. Taken together, our results suggest that although P. vulgaris seed coat does not interfere with C. maculatus embryonic development, food digestion was clearly compromised, impacting larval fitness (e.g. body mass and survivability).  相似文献   

3.
1. A globulin fraction prepared from the meal of Callosobruchus maculatus-resistant cowpea (Vigna wiguiculata) seeds was shown to be detrimental to this bruchid when incorporated in artificial seeds.2. The performance of C. maculatus was also shown to be strongly hindered by vicilins from resistant seeds when these storage proteins were incorporated in artificial seeds at the level of 2%.3. The purified vicilins from seeds of both resistant and susceptible cowpea varieties were shown to have the same SDS-PAGE pattern but different mobilities in non-denaturing polyacrylamide gel electrophoresis.4. These results and previous ones obtained by us (Silva and Xavier-Filho, 1991; Sales et al., 1992) strongly suggest that the resistance of cowpea seeds from the cultivar TVu 2027 and from others bred from it is associated with the presence of vicilin molecules which are refractory to digestion by bruchid midgut proteinases.  相似文献   

4.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil and the Mexican bean weevil, are pests that damage stored seeds. Plant lectins have been implicated as antibiosis factors against insects, particularly the cowpea weevil, Callosobruchus maculatus. Talisia esculenta lectin (TEL) was tested for anti-insect activity against C. maculatus and Zabrotes subfasciatus larvae. TEL produced ca. 90% mortality to these bruchids when incorporated in an artificial diet at a level of 2% (w/w). The LD(50) and ED(50) for TEL was ca. 1% (w/w) for both insects. TEL was not digested by midgut preparations of C. maculatus and Z. subfasciatus. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

5.
Artificial seeds offer an important method to assay the bioactivity of natural and synthetic compounds against insect larvae that develop within the cotyledons of seeds. Here, the efficacy of artificial seeds as a mechanism to deliver bioactive compounds to larvae of the bruchid beetle, Callosobruchus maculatus, was compared to that of black-eyed beans that had been imbibed with the same bioactive compounds: malachite green or the methanolic extract of neem (Azadirachta indica). Females laid an equivalent number of eggs on control artificial seeds in comparison with black-eyed beans, although egg-to-adult survival on artificial seeds was reduced. Manipulation of the hardness of artificial seeds influenced female oviposition decisions, with more eggs laid on the harder seeds, although seed hardness had no effect on egg-to-adult survival. Incorporation of neem extract or malachite green into the artificial seeds resulted in 100 % larval mortality, while larval mortality on seeds imbibed with neem extract or malachite green was between 50 and 70 %. This suggests incorporation of toxins into artificial seeds, produces a more sensitive assay of compound toxicity in comparison with the method of imbibing seeds and offers a useful method to study of seed–arthropod interactions.  相似文献   

6.
In this work, we analyzed the effects of coffee seed proteins, especially Cc-LTP1 on the larval development of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), a bruchid pest of beans and the most important insect pest of Vigna unguiculata (L.) Walp. Artificial seed assay, which incorporated the F/0-90 fraction from Coffea canephora seeds, resulted in the reduction of oviposition and caused an inhibition of C. maculatus larval development in a dose-dependent manner. The F/0-90 fraction used at a 4 % concentration resulted in the survival of no larvae. The purified Cc-LTP1, at a concentration of 0.5 %, also demonstrated effective inhibition of larval development, reducing both females oviposition and the weight and number of larvae. Cc-LTP1 was also able to inhibit the C. maculatus gut α-amylase activity, and immunolabeling by an anti-LTP serum was observed in the midgut tissues of the C. maculatus larvae. Cc-LTP1 has shown binding affinity towards microvillar cells, endoplasmic reticulum and mitochondria, as demonstrated by micrographic images taken by a transmission electron microscope. The results from this study indicate that Cc-LTP1 has insecticidal actions toward C. maculatus and exerts anti-nutritional effects with direct actions on intestinal tissues.  相似文献   

7.
Vicilins are seed proteins, and they constitute 70–80% of the total protein in leguminous seeds; with amolecular mass between 150 and 190 kDa, they are composed of subunits without disulfide bridges, with high affinity for chitin-binding. They are also associated with seed defense against insect pests. The chitin-binding vicilin from Anadenanthera colubrina seeds was purified by ammonium sulfate, followed by affinity chromatography on a chitin column, molecular exclusion on Superdex 75 Tricorn in FPLC system and Phenomenex C8 chromatography in HPLC system. The A. colubrina vicilin, named AcV, is a tetrameric glycoprotein composed of 1.55% carbohydrates and molecular weight determined by SDS-PAGE, consisting of 70, 73, 43 and 41 kDa. The AcV homogeneity was confirmed in native PAGE, where it was observed to be a unique band with slow mobility in this gel, with approximately 230 kDa. AcV added to the Callosobruchus maculatus diet in the bioassays resulted in a strong effect on adult emergence (ED50 of 0.096%), and in larvae caused a marked reduction in mass (WD50 of 0.32%) and lethality (LD50 of 0.33%) (w:w). The digestibility of AcV was evaluated in vitro with the digestive enzymes of larvae of C. maculatus of fourth instar, showing major fragments of 10 and 30 kDa. AcV showed reactivity against the anti-EvV antibody from Erythrina velutina vicilin. The deleterious effects of AcV are likely to be associated with the chitin-binding fragments generated by proteolysis in the bruchid gut, similarly to that found for vicilins from other leguminous plant species, Enterolobium contortisiliquum and Vigna unguiculata. AcV might be a candidate protein for a possible bioinsecticidal control of the bruchid weevil, C. maculatus.  相似文献   

8.
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bauhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH2 (RGE) and IVYYPDRGETGL-NH2 (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED50 0.16% and LD50 0.09%), this being even more effective than the native protein.  相似文献   

9.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmoLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

10.
Cheese wood, Alstonia boonei De Wild stem bark was extracted with five different solvents namely: methanol, ethanol, acetone, petroleum ether and n-hexane. The extracts were tested for insecticidal activity on cowpea bruchid, Callosobruchus maculatus (Fab.). Adult mortality and adult emergence of the insects were investigated. Oviposition deterrences using dual-choice and multiple-choice tests were also investigated as well as percentage damage and weight loss at temperature of 28?±?2?°C and 75?±?5% relative humidity. Results showed that at the rate of 2% extract per 20?g of cowpea seeds, methanol, petroleum ether and n-hexane extracts caused 100% mortality of adult cowpea bruchid after four?days of post treatment. When the bruchid had choice of oviposition substrate, they laid significantly (p?<?0.05) fewer eggs on cowpea seeds treated with extracts compared to untreated seeds. There was no adult emergence in seeds treated with methanol, ethanol, petroleum ether and n-hexane extracts and 100% reduction in F1 progeny was recorded compared with untreated that had 81.86% adults emergence and 0% reduction in F1 progeny. The results obtained from this study revealed that methanol, ethanol, acetone, petroleum ether and n-hexane extracts of A. boonei stem bark were effective in controlling C. maculatus and could serve as an alternative to synthetic insecticides for the protection of stored cowpeas against bruchids.  相似文献   

11.
This study focused on the characterization of a novel cysteine proteinase inhibitor from Enterolobium contortisiliquum seeds targeting the inhibition of the growth of Callosobruchus maculatus larvae, an important cosmopolitan pest of the cowpea Vigna unguiculata during storage. The inhibitor was isolated by ion-exchange besides of size exclusion chromatography. EcCI molecular mass is 19,757 Da, composed of two polypeptide chains. It strongly inhibits papain (Kiapp 0.036 nM) and proteinases from the midguts of C. maculatus (80 μg mL?1, 60% inhibition). The inhibitory activity is reduced by 40% after a heat treatment at 100 °C for 2 h. The protein displayed noxious activity at 0.5% and 1% (w/w) when incorporated in artificial seeds, reducing larval mass in 87% and 92%, respectively. Treatment of C. maculatus larvae with conjugated EcCI-FIT and subsequent biodistribution resulted in high fluorescence intensity in midguts and markedly low intensity in malpighian tubules and fat body. Small amounts of labeled proteins were detected in larvae feces. The detection of high fluorescence in larvae midguts and low fluorescence in their feces indicate the retention of the FITC conjugated EcCI inhibitor in larvae midguts. These results demonstrate the potential of the natural protein from E. contortisiliquum to inhibit the development of C. maculatus.  相似文献   

12.
Interspecific variation of protein amino acids between peanut, horse bean, french bean, lentil, cowpea and chick-pea was undertaken in relation to larval development of C. maculatus. Twenty-one groups of amino acids were identified and quantified. In all seeds, free amino acids exist in low quantities; but they are more numerous than bound amino acids. Essential amino acids for man are sufficient in the six species, except for the sulphur amino acids in all seeds, and for lysine in peanut. Utilization of those pulses, after cooking, in human food complements cereals. Larval development possibilities of C. maculatus upon the used seeds shows up that: (a) with chick-pea and cowpea, the bruchid thrives normally. However, although amino acids are higher in cowpea than in chick-pea, the better performances were observed on the latter; (b) peanut, french bean, horse bean and lentil are unsuitable for larval development of the insect. Although they are rich in amino acids, all larvae die at first in star within these pulses. We conclude that larval development of C. maculatus does not depend only on the amounts of amino acids in the seeds but also on other trophic factors. These could consist of the balance between different nutritive compounds and the presence of allelochemical substances in the tested seeds which bruchid larvae are unable to utilize.  相似文献   

13.
The defensive role of the latex of Calotropis procera has recently been reported. In this study, latex proteins involved in detrimental effects on insects were evaluated on another important crop pest. The latex was fractionated to obtain its major protein fraction, which was then used to evaluate its insecticidal properties against Callosobruchus maculatus (Coleoptera: Bruchidae) in artificial bioassays. Laticifer proteins (LP) were investigated to characterize their action in such an activity. LP was highly insecticidal at doses as low as 0.1% (W/W). This effect was slightly augmented in F1 generation reared in artificial seeds containing LP at similar proportions of F0, but was fully reversed when F1 developed in LP-free seeds. The insecticidal proteins were not retained in a chitin column, and did not lose their insecticidal activity, even after heat treatment or pronase digestion. However, these samples inhibited papain (EC 3.4.22.2) activity and gut proteases of C. maculatus larvae, and a reverse zymogram showed the presence of protein bands resistant to papain digestion. These activities were not observed in unheated LP as they were probably masked by abundant endogenous cysteine protease (EC 3.4.22.16) activity present in unheated LP. LP was resistant to proteolysis when assayed with C. maculatus gut extract. However, gut proteins of C. maculatus were digested when incubated with LP. These observations and the deleterious effects of LP upon C. maculatus, reinforce the hypothesis that laticifer fluids are involved in plant defense against insects and indicate C. procera latex to be a source of promising insecticidal proteins. The inhibitor of proteolysis present in the latex seems to be resistant to heat and proteolysis and is certainly involved in the detrimental effects observed.  相似文献   

14.
Genetically modified (GM) cowpea seeds expressing αAI-1, an α-amylase inhibitor from the common bean, have been shown to be immune against several bruchid species. Effective control of such pests by growing GM cowpea could promote the spread of bruchid species that are αAI-1 tolerant. Consequently, the sustainability of bruchid pest control could be increased by combining GM seeds and hymenopteran parasitoids. However, there are concerns that αAI-1 could interfere with the biological control provided by parasitoids. Here, we assessed the impact of GM cowpea seeds expressing αAI-1 on the αAI-1-tolerant bruchid Zabrotes subfasciatus and its parasitoid Dinarmus basalis. αAI-1 in cowpea seeds did not increase resistance to Z. subfasciatus or affect the mortality rate of Z. subfasciatus larvae. Parasitism of Z. subfasciatus by D. basalis and fitness of D. basalis offspring were not affected by the presence of αAI-1. Thus, αAI-1-expressing cowpeas and parasitoids should be compatible for the control of bruchid pests.  相似文献   

15.
Diatraea saccharalis, is a major sugarcane pest, causing damage to the stalks of sugarcane plants. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seeds and was tested for its insect growth regulatory effect. ApTI showed a dose-dependent effect on average larval weight and survival. 0.1% ApTI produced approximately 67% and 50% decreases in weight and survival larval, respectively. The results from dietary utilization experiments with D. saccharalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food, and an increase in approximate digestibility and metabolic cost. The level of trypsin was significantly decreased (ca. 55%) in the midgut of larvae reared on a diet containing 0.05% ApTI and the trypsin activity in ApTI-fed larvae demonstrated sensitivity to ApTI. The action of ApTI on the development of D. saccharalis larvae shows that this protein may have great toxic potential.  相似文献   

16.
Modified atmosphere based on lack of O2 offers a safe, residue-free alternative to chemical fumigants for pest control in stored grains. In this study, we intended to determine whether elevated CO2 (at a biologically achievable level) has an enhanced suppressive effect over low O2 atmosphere alone on the cowpea bruchid (Callosobruchus maculatus), a storage pest of cowpea and other legumes. Experiments were performed under two modified atmospheric conditions, (1) 2% O2 + 18% CO2 + 80% N2 and (2) 2% O2 + 98% N2. Both hypoxic environments significantly affected the development and survival of all insect developmental stages. Eggs were most vulnerable to hypoxia, particularly at the early stage (4–6 h old), surviving only up to a maximum of 2 days in both treatments. These were followed by adults, pupae and larvae, in order of decreasing susceptibility. The 3rd and 4th instar larvae were most resilient to hypoxia and could survive up to 20 days of low O2. The presence of 18% CO2 significantly increased the mortality of adults, the later stage of eggs, as well as 1st and 4th instar larvae caused by hypoxia. However, the surviving insects exhibited faster development, evidenced by their earlier emergence from cowpea seeds compared to those without CO2. One interesting observation was the frequent, premature opening of the emergence windows in the 4th instar larvae when CO2 was involved. This phenomenon was not observed at all in insects stressed by low O2 alone. Differential expression profiling of metabolic genes and proteolytic activity of midgut digestive enzymes suggested that the rate of metabolic activity could contribute in part to the difference in insect development and survival under hypoxia in the presence and absence of CO2.  相似文献   

17.
Plant proteinase inhibitors (PIs) have been shown to reduce the growth rates in larvae of numerous insect species. On the other hand, insects can also regulate their proteinases against plant PIs. In the present study, we report the compensatory activities of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) gut proteinases against the PIs of Albizia lebbeck seeds. Total of ten proteinase inhibitor bands were detected in the seed extract of A. lebbeck. Bioassays were conducted by feeding H. armigera larvae on diet containing partially purified PIs from A. lebbeck seeds. Results show that larval growth and survival was significantly reduced by A. lebbeck PIs. We found that higher activity H. armigera gut proteinase (HGP) isoforms observed in the midgut of control larvae were inhibited in the midgut of larvae fed on test diet. Some HGP isoforms were induced in the larvae fed on PI containing test diet; however, these isoforms showed lower activity in the larvae fed on control diet. Aminopeptidase activities were significantly increased in the midgut of larvae fed on test diet. A population of susceptible and resistant enzymes was observed in the midgut of H. armigera, when fed on diet containing PIs from A. lebbeck seeds. Our initial observations indicate that H. armigera can regulate its digestive proteinase activity against non-host plant PIs, too. It is important to study the exact biochemical and molecular mechanisms underlying this phenomenon in order to develop PI-based insect control strategies.  相似文献   

18.
《Journal of Asia》2022,25(1):101871
Bruchids pose serious threat to stored pulses, and their successful management largely depends on phosphine fumigation. For the first time, the comparative assessment of phosphine toxicity to all the developmental stages of three bruchid species in India was attempted at varied concentrations and exposure times. Based on probit estimates, the egg stages found to be least sensitive to phosphine followed by pupae and larvae, whereas adults were highly sensitive. Among the age groups of eggs, the early age groups (0–2 days old) were less sensitive than later stages (3–6 days old). The bruchid species viz., Callosobruchus maculatus (F.), C. analis (F.), and C. chinensis L. exhibited a variable degree of susceptibility irrespective of life stages and exposure periods tested. However, the collective probit estimates indicated C. maculatus being slightly less sensitive followed by C. analis and C. chinensis. Except in 0–2 day old eggs, the mortality response in 3–6 day old eggs, larvae, pupae, and adults was increased with increasing phospine concentrations and exposure period. The mortality response got even steeper at 48 and 72 h exposures as evident by decreasing LC50 and LC90 values. The information generated on phospine sensitivity in different life stages would serve as baseline data to design insecticide resistance studies in future and also to ascertain stage-specific Concentration vs. time (Ct) products for the recommendation of phosphine doses for successful management of bruchids during any of their life stages under storage conditions.  相似文献   

19.
Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked byCallosobruchus maculatus andC. chinensis which cause extensive damage. The α-amylase inhibitor gene isolated fromPhaseolus vulgaris seeds was introduced into chickpea cultivar K850 throughAgrobacterium- mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb α-amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of α-amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevilC. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.  相似文献   

20.
The sympatric bruchids Callosobruchus rhodesianus (Pic) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) colonize cultures of cowpea, Vigna unguiculata (Walp.) (Papilionaceae), in Togo at the end of the rainy season. Seeds containing larvae of the two bruchid species were introduced into the storage systems. Callosobruchus rhodesianus adults emerged from the seeds at the beginning of storage, but this species disappeared quickly and C. maculatus became dominant. Analysis of the reproduction of females collected at the beginning of storage made it possible to distinguish between four groups of females differing in their reproductive activity. Three groups were sexually active but they differed in their fecundity and the duration of the latency period before the first oviposition phase. The fourth group of females was in reproductive diapause. In interspecific competition, the presence of C. maculatus larvae reduced the survival chances of C. rhodesianus and therefore is disadvantageous for this species. The main factors explaining the rapid decrease of the C. rhodesianus populations under storage conditions were the variability of female reproductive activity with the emergence of insects in reproductive diapause and the significant larval mortality in interspecific competition with C. maculatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号