首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
River flow influence on the fish community of the Tagus estuary (Portugal)   总被引:3,自引:0,他引:3  
The influence of river flow on the fish community was assessed for the Tagus estuary (Portugal), based on sampling surveys carried out between 1979 and 2002. Four estuarine areas were sampled using similar fishing gear and effort in all the years considered in this study (1978–1980; 1995–1997; and 2001–2002). According to river freshwater flow values, sampling years were classified as wet (mean value of 714 m3 s−1, sd = 110 m3 s−1) or dry (mean value of 164 m3 s−1, sd = 19m3 s−1). Species richness varied between 22 and 39 according to the year, but no significant differences were related to river flow. The number of species per ecological guild was also similar in wet and dry years. Fish assemblage was dominated by marine occasional, estuarine resident and marine-estuarine opportunist species that represented near 90% of all fish species. The highest densities were represented by estuarine resident species. Fish density in dry and wet years differed significantly (mean density of 10.51 individuals 1,000 m−2 and 3.62 individuals 1,000 m−2, respectively), and the major differences were registered for estuarine resident, marine-estuarine opportunist and catadromous species. These differences probably reflected the estuarine habitat availability and also differences in fish densities in some estuarine areas under different flow conditions. The multivariate ordination analyses performed outlined both seasonal and spatial variation trends in fish distribution and abundance. The estuarine longitudinal gradient and its relationship with species distribution were less evident in dry years. Relationships between species abundance and river flow were different according to species, which is probably due to different needs in the timing and magnitude of river flow. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

2.
The community structure of caprellids inhabiting two species of seagrass (Cymodocea nodosa and Zostera marina) was investigated on the Andalusian coast, southern Spain, using uni and multivariate analyses. Three meadows were selected (Almería, AL; Málaga, MA; Cádiz, CA), and changes in seagrass cover and biomass were measured from 2004 to 2005. Four caprellid species were found; the density of Caprella acanthifera, Phtisica marina and Pseudoprotella phasma was correlated to seagrass biomass. No such correlation was found for Pariambus typicus, probably because this species inhabits sediments and does not cling to the seagrass leaves. We recorded a significant decrease in seagrass cover and biomass in MA due to illegal bottom trawling fisheries. Phtisica marina and P. typicus were favoured by this perturbation and increased their densities after the trawling activities. A survey of reports on caprellids in seagrass meadows around the world showed no clear latitudinal patterns in caprellid densities (ranging from 6 to 1,000 ind/m2 per meadow) and species diversity. While caprellid abundances in seagrass meadows are often very high, the number of species per meadow is low (range 1–5).  相似文献   

3.
The invasive soft-shell clam Mya arenaria was recorded for the first time in the Tagus estuary, central Portugal. Propagules of the soft-shell clam were probably unintentionally introduced into the Tagus estuary through ballast water. Mya arenaria was observed in muddy sands in the upper intertidal zone. The assemblage in which the soft-shell clam was observed was composed of typical estuarine species such as the gastropod Hydrobia ulvae, the bivalve Scrobicularia plana and several polychaete species. The population density of Mya arenaria in the finding area was 40 ind m−2 with a fresh biomass of 163.5 g FW m−2.  相似文献   

4.
The influence of a passive shrimp fishing gear on benthic communities was studied at Laguna Estuarine System (South Brazil), a shallow choked coastal lagoon. The gear is composed by a group of fyke nets (25 mm mesh size) set in contact to the bottom, fixed with stakes forming a cage-like structure (around 30 m2). Samplings were conducted in the two main fishery areas of the estuarine system, Mirim (sand bottoms) and Imaruí (muddy bottoms) lagoon, in May 2005. In each area, 10 fyke net enclosures and 10 nearby sites without nets (control) were sampled. Microphytobenthos biomass (chlorophyll a and phaeopigments), number of taxa/species, density, Hill’s number N 1 and N 2, and estimated number of species (ES100) were used as community attributes. For the nematodes, values of the maturity index and abundance of Wieser’s feeding type were used as well. The effects of the small-scale passive shrimp fishing gear on the coastal lagoon bottoms were dependent on the benthic component analyzed and the type of sediment. Whereas macrofauna was not affected by the net enclosures, meiofauna and nematodes, particularly from the mud sites were. At the sand site, the fyke net enclosures caused a decrease in the microphytobenthos biomass and changed the relative abundances of non-selective deposit feeding and epigrowth-feeding nematodes. The results indicated that small-scale static nets, such as the studied fyke enclosures, produced low intensity levels of disturbance. However, the enclosed area by nets at Laguna had already reached around 25,000 m2. Given the large proportion of the coastal population involved and the area closed by nets, management policies should consider site-specific differences within the same estuarine system.  相似文献   

5.
In the native range of Tradescantia fluminensis in SE Brazil surveys revealed a natural enemy biota attacking the plant that was rich in potential biocontrol agents for New Zealand (NZ), including nine fungi and 10 herbivorous insect species. Similar surveys in NZ, where T. fluminensis is an invasive exotic weed, revealed no specialist insect herbivores or pathogens. The Brazilian insect herbivores included leafmining, stemboring and gall-forming feeding guilds that were absent in NZ. Mean foliar damage levels per site on T. fluminensis were 7.8× higher for folivores in Brazil cf. NZ, and 21.2× higher for pathogens. The presence of rust pustules, or ‘brown lesions’, on leaves in Brazil was negatively associated with damage by folivores, perhaps indicating an antagonistic interaction. In contrast, damage by the white smut fungus, Kordyana sp., was not negatively associated with folivore damage. Mean dry biomass of T. fluminensis was significantly lower in Brazil (164 g m?2) cf. NZ (455 g m?2). In NZ, 85% of sites had biomass measures >200 g m?2 (the previously determined threshold above which native forest regeneration fails). In Brazil, only 27% of sites had biomass measures >200 g m?2. Among the insect herbivores, three chrysomelid beetles, Neolema ogloblini, Neolema abbreviata and Lema basicostata were prioritised as potential biocontrol agents. Their larvae cause potentially complementary damage to leaves, shoot-tips and mature stems, respectively. Several pathogens, including a rust, were rejected before we selected the Kordyana species. Host range testing of all four agents showed sufficient host-specificity for consideration for release in NZ. Neolema ogloblini and L. basicostata were field-released in NZ in 2011 and 2012, with the field-release of N. abbreviata due late 2012. An application to release Kordyana sp. in NZ has been made.  相似文献   

6.
Invasive species can monopolize resources and thus dominate ecosystem production. In this study we estimated secondary production and diet of four populations of Pomacea canaliculata, a freshwater invasive snail, in wetlands (abandoned paddy, oxbow pond, drainage channel, and river meander) in monsoonal Hong Kong (lat. 22°N). Apple snail secondary production (ash-free dry mass [AFDM]) ranged from 165.9 to 233.3 g m−2 year−1, and varied between seasons. Production was lower during the cool dry northeast monsoon, when water temperatures might have limited growth, but fast growth and recruitment of multiple cohorts were possible throughout much (7–10 months) of the year and especially during the warm, wet southwest monsoon. The diet, as revealed by stomach-content analysis, consisted mainly of detritus and macrophytes, and was broadly consistent among habitats despite considerable variation in the composition and cover of aquatic plants. Apple snail annual production was >10 times greater than production estimates for other benthic macroinvertebrates in Hong Kong (range 0.004–15 g AFDM m−2 year−1, n = 29). Furthermore, annual production estimates for three apple snail populations (i.e. >230 g AFDM m−2 year−1) were greater than published estimates for any other freshwater snails (range 0.002–194 g AFDM m−2 year−1, n = 33), regardless of climatic regime or habitat type. High production by P. canaliculata in Hong Kong was attributable to the topical climate (annual mean ~24°C), permitting rapid growth and repeated reproduction, together with dietary flexibility including an ability to consume a range of macrophytes. If invasive P. canaliculata can monopolize food resources, its high productivity indicates potential for competition with other macroinvertebrate primary consumers. Manipulative experiments will be needed to quantify these impacts on biodiversity and ecosystem function in wetlands, combined with management strategies to prevent further range extension by P. canaliculata.  相似文献   

7.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

8.
The influence of three different initial stocking densities (SD) in flowthrough systems was evaluated on growth performance and feed utilizaition in beluga, Huso huso, and ship sturgeon, Acipenser nudiventris, juveniles in three different grow‐out phases for 228 days. In each grow‐out phase, fish were randomly distributed in 18 concrete square tanks (2.0 × 1.0 × 1.2 m3; 2 m3 of volume) according to the experimental SD. At the first phase, both fish species were subjected to three SD including 1.5, 3 and 6 kg/m2 for 60 days. In the second phase, fish were submitted to three SD including 3, 6 and 9 kg/m2, whereas in the third phase, beluga were stocked at 6, 9 and 12 kg/m2 and ship sturgeon were stocked at 6, 8 and 10 kg/m2 and each phase lasted for 12 weeks. In both species, the growth performance and feed intake (FI) significantly decreased with increasing SD at the end of the first phase (p < 0.05). In the second phase, growth performance and FI in beluga decreased with increasing SD, whereas in ship sturgeon neither growth nor FI were affected by SD. Interestingly, the growth performance and feed utilization in both species were not decreased with increasing SD in the third phase indicating adaptability of these species to high stocking density during grow‐out period. According to the result of this study, the appropriate initial SD for beluga within the range of 100–500, 500–2,000 and 1,500–3,000 g were at 1.5, 6 and 12 kg/m2, respectively in an open flow‐throw system. Regarding to ship sturgeon, initial SD at 1.5 and 10 kg/m2recommended for fish within the range of 100–300 and 300–1,200 g, respectively in an open flow‐throw system.  相似文献   

9.
Wood  Timothy S. 《Hydrobiologia》2001,445(1-3):51-56
A new freshwater bryozoan species, Plumatella mukaii, is recognized from eastern Asia and western South America. Colonies and statoblasts both bear a resemblance to P. emarginata, and have often been confused with that species, especially in Japanese studies. Floatoblasts and sessoblasts are enclosed within a tough, wrinkled, membrane which resists removal by mechanical means. Floatoblasts are generally smaller than those of P. emarginata, but display unusually high variability in their overall dimensions. The species has been reported from both lentic and lotic habitats. In Asia, the range includes Japan, Korea, China, India and Indonesia. It has most recently also been found at several sites in Chile. The recognition of P. mukaii narrows the previously reported range of P. emarginata and invites a re-inspection of that species worldwide.  相似文献   

10.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

11.
Invasive epiphyte Lophocladia lallemandii macroalga induces changes in the erect bryozoan Reteporella grimaldii at shallow Posidonia oceanica meadows at a Mediterranean pristine location. Bryozoan densities at noninvaded seagrass plots (88.32 ± 3.11 colonies m−2) are higher than those at invaded plots (13.39 ± 1.09 colonies m−2) with a fourfold decrease in number of colonies. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione peroxidase) and increase in lipid peroxidation malondialdehyde (MDA) [0.80 ± 0.06 nmol/mg prot at Posidonia oceanica plots to 1.08 ± 0.04 nmol/mg prot at L. lallemandii (P < 0.05)] is observed on sessile bryozoans as response to anoxia caused by L. lallemandii. δ13C of bryozoan isotopic composition differed among treatments, covering a broad range (−19.30‰ invaded to −2.84‰ at noninvaded plots), suggesting modification of food sources. Induced shifts of a filter-feeding erect bryozoan by dense algal turfs at invaded seagrasses are demonstrated, highlighting the need to further address interaction across natural communities and alien species invaded systems before further cascade effects are driven.  相似文献   

12.
Based on a critical review of the literature, and on abundant material recently collected along the coast of Brazil, a synthesis of the occurrence and distribution of the Brazilian species of seagrasses is presented. Two species of Hydrocharitaceae, namely Halophila baillonii Aschers. and H. decipiens Ostenf., and three species of Potomogetonaceae, Halodule emarginata den Hartog, H. wrightii Aschers. and Ruppia maritima L. s.s., were found. Ruppia maritima was found all along the Brazilian coast, from about 3 to 32°S latitude, in brackish water ponds and lakes, with salinities varying from 0.3 to 28?.. The other species are restricted to normal seawater (±35?.), although Halodule wrightii was also found in hypersaline waters (45?.). This last species is the most common seagrass in Brazil. The species of Halophila are restricted to warmer waters and were not found further south than Rio de Janeiro State, being especially common on the NE coast at depths down to 62 m. During the course of these studies, Halophila baillonii was found for the second time in Brazil since its original collection in 1888. A critical comparison of a large number of plants leads us to the conclusion that Halodule brasiliensis Lipkin cannot be distinguished from H. wrightii, and H. lilianae den Hartog cannot be distinguished from H. emarginata. Reproductive structures of H. emarginata are described for the first time.  相似文献   

13.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

14.
Zooplankton, sampled at five stations from the upper Sangga estuary (7 km upstream) in Matang Mangrove Forest Reserve (MMFR), Malaysia, to 16 km offshore, comprised more than 47% copepod. Copepod abundance was highest at nearshore waters (20,311 ind m−3), but decreased toward both upstream (15,572 ind m−3) and offshore waters (12,330 ind m−3). Copepod abundance was also higher during the wetter NE monsoon period as compared to the drier SW monsoon period, but vice versa for copepod species diversity. Redundancy analysis (RDA) shows that copepod community structure in the upper estuary, nearshore and offshore waters differed, being influenced by spatial and seasonal variations in environmental conditions. The copepods could generally be grouped into estuarine species (dominantly Acartia spinicauda Mori, Acartia sp1, Oithona aruensis Früchtl, and Oithona dissimilis Lindberg), stenohaline species (Acartia erythraea Giesbrecht, Acrocalanus gibber Giesbrecht, Paracalanus aculateus Giesbrecht, and Corycaeus andrewsi Farran) and euryhaline species (Parvocalanus crassirostris Dahl, Oithona simplex Farran, and Bestiolina similis (Sewell)). Shifts in copepod community structure due to monsoonal effects on water parameters occurred at the lower estuary. Copepod peak abundance in mangrove waters could be associated with the peak chlorophyll a concentration prior to it. Evidence of copepod consumption by many species of young fish and shrimp larvae in the MMFR estuary implies the considerable impact of phytoplankton and microphytobenthos on mangrove trophodynamics.  相似文献   

15.
We described an extension of the known distribution range of the Cantabrian Capercaillie Tetrao urogallus cantabricus into an atypical area and habitat for the species. Nine Capercaillie leks and 14 cocks were registered in Mediterranean Quercus pyrenaica forests in an area of 1,500 km2, of which 4,500 forest hectares were surveyed. At present, this population represents both the southern-most distribution for Capercaillie and the only one inhabiting Mediterranean Q. pyrenaica forests, what suggests a wider adaptation of this (sub)species than previously thought. This population and its habitat need to be better studied, as well as to be considered in conservation planning for Cantabrian Capercaillie.  相似文献   

16.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

17.
Skeletal extension (3.67 ± 0.65 mm year−1), density (1.49 ± 0.16 g cm−3), and calcification rate (0.55 ± 0.12 g cm−2 year−1) were determined using annual growth bands of Porites astreoides skeletons collected in three different reef systems in the Western Atlantic. The corals showed a low-density annual growth band at their apex, and seasonal timing of low and high-density band formation in P. astreoides appears to be similar at the three study sites in the Western Atlantic. The range of values presented here, for the three growth variables, spans the known range of skeletal-growth variability in P. astreoides for the Western Atlantic. The relationships between the growth parameters were similar to those previously described by other authors for massive Porites species from the Indo-Pacific, suggesting that P. astreoides has the same growth strategy, primarily investing calcification resources in extension rate. It is noteworthy that the P. astreoides population growing off the northwest coast of Cuba had similar growth characteristics as populations from the Caribbean region which were different from populations in the Gulf of Mexico, which seem to be isolated and adapted for growth at higher average sea-surface temperatures.  相似文献   

18.

Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m−2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m−2) and Parapercis clathrata (0.23 ± 0.31 g m−2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32–55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m−2 yr−1), Pa. clathrata (0.10 g m−2 yr−1) and Ps. fuscus (0.07 g m−2 yr−1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  相似文献   

19.
The typical habitat of the rare, endemic South African mudsnail Hydrobia knysnaensis is the leaves of upper-shore Zostera capensis within high-salinity salt-marsh pools and channels. In the Knysna estuarine system, it is the numerically dominant member of a guild of six small microphytophagous gastropods; it is absent from lower level and more exposed Zostera meadows, where its place is taken by Rissoa pinna. H. knysnaensis is also here recorded from the nearby Swartvlei Estuary, in the same habitat type. This unusual habitat for a Hydrobia may in part account for the failure of earlier surveys to detect its presence, notwithstanding that it may well locally be the most numerous gastropod in each of these systems. Generally, however, it (and probably other small gastropods) seem to have been confused in estuarine fauna lists with Assiminea. Experiments show that the rate of feeding in H. knysnaensis is curtailed at population densities exceeding 2000–4000m?2 and in salinities below some 10psu. The proportion of non-feeding snails also increases at high population densities and in low salinities. The bearing of these results on whether H. knysnaensis is likely to be the 'Hydrobia sp.' recorded from some other South African localities and on the causes of its rarity are discussed.  相似文献   

20.
Global losses of seagrasses and mangroves, eutrophication‐driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy‐two 0.25 m2 plots (= 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4+, dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus‐fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号