首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoshimura Y  Sogawa Y  Yamauchi T 《FEBS letters》1999,446(2-3):239-242
Autophosphorylation-dependent translocation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) to postsynaptic densities (PSDs) from cytosol may be a physiologically important process during synaptic activation. We investigated a protein phosphatase responsible for dephosphorylation of the kinase. CaM kinase II was shown to be targeted to two sites using the gel overlay method in two-dimensional gel electrophoresis. Protein phosphatase 1 (PP1) was identified to dephosphorylate CaM kinase II from its complex with PSDs using phosphatase inhibitors and activators, and purified phosphatases. The kinase was released from PSDs after its dephosphorylation by PP1.  相似文献   

2.
The NF-kappaB pathway is important in the control of the immune and inflammatory response. One of the critical events in the activation of this pathway is the stimulation of the IkappaB kinases (IKKs) by cytokines such as tumor necrosis factor-alpha and interleukin-1. Although the mechanisms that modulate IKK activation have been studied in detail, much less is known about the processes that down-regulate its activity following cytokine treatment. In this study, we utilized biochemical fractionation and mass spectrometry to demonstrate that protein phosphatase 2Cbeta (PP2Cbeta) can associate with the IKK complex. PP2Cbeta association with the IKK complex led to the dephosphorylation of IKKbeta and decreased its kinase activity. The binding of PP2Cbeta to IKKbeta was decreased at early times post-tumor necrosis factor-alpha treatment and was restored at later times following treatment with this cytokine. Experiments utilizing siRNA directed against PP2Cbeta demonstrated an in vivo role for this phosphatase in decreasing IKK activity at late times following cytokine treatment. These studies are consistent with the ability of PP2Cbeta to down-regulate cytokine-induced NF-kappaB activation by altering IKK activity.  相似文献   

3.
4.
5.
Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked β-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function.  相似文献   

6.
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase which has multiple functions, including inhibition of the mitogen-activated protein (MAP) kinase pathway. Simian virus 40 small t antigen specifically inhibits PP2A function by binding to the PP2A regulatory subunit, interfering with the ability of PP2A to associate with its cellular substrates. We have reported that the expression of small t antigen inhibits PP2A association with Shc, leading to augmentation of insulin and epidermal growth factor-induced Shc phosphorylation with enhanced activation of the Ras/MAP kinase pathway. However, the potential involvement of PP2A in insulin's metabolic signaling pathway is presently unknown. To assess this, we overexpressed small t antigen in 3T3-L1 adipocytes by adenovirus-mediated gene transfer and found that the phosphorylation of Akt and its downstream target, glycogen synthase kinase 3beta, were enhanced both in the absence and in the presence of insulin. Furthermore, protein kinase C lambda (PKC lambda) activity was also augmented in small-t-antigen-expressing 3T3-L1 adipocytes. Consistent with this result, both basal and insulin-stimulated glucose uptake were enhanced in these cells. In support of this result, when inhibitory anti-PP2A antibody was microinjected into 3T3-L1 adipocytes, we found a twofold increase in GLUT4 translocation in the absence of insulin. The small-t-antigen-induced increase in Akt and PKC lambda activities was not inhibited by wortmannin, while the ability of small t antigen to enhance glucose transport was inhibited by dominant negative Akt (DN-Akt) expression and Akt small interfering RNA (siRNA) but not by DN-PKC lambda expression or PKC lambda siRNA. We conclude that PP2A is a negative regulator of insulin's metabolic signaling pathway by promoting dephosphorylation and inactivation of Akt and PKC lambda and that most of the effects of PP2A to inhibit glucose transport are mediated through Akt.  相似文献   

7.
8.
The mechanism of activation for protein kinase B (PKB), an important target for insulin signaling, has been scarcely investigated in primary cells. In this study, we have characterized the insulin-induced phosphorylation and activation of PKB beta in primary rat adipocytes. Insulin stimulation resulted in a translocation of PKB beta from cytosol to membranes, and phosphorylation and activation of PKB beta. Phosphoamino acid analysis and phosphopeptide mapping demonstrated that the phosphorylation occurred mainly on serines, also when using calyculin A, and that these were localized within one major phosphopeptide. Radiosequencing showed that the radioactivity was released in Cycle No. 7. In addition, the peptide was specifically immunoprecipitated from a tryptic digest of PKB beta using the anti-phospho-PKB (Ser-473) antibody. Taken together, these results show that rat adipocyte PKB beta mainly is phosphorylated on Ser-474 in response to insulin stimulation, in contrast to previous studies in human embryonic kidney (HEK) 293 cells demonstrating, in addition, phosphorylation of Thr-309.  相似文献   

9.
PASTICCINO2 (PAS2), a member of the protein Tyr phosphatase-like family, is conserved among all eukaryotes and is characterized by a mutated catalytic site. The cellular functions of the Tyr phosphatase-like proteins are still unknown, even if they are essential in yeast and mammals. Here, we demonstrate that PAS2 interacts with a cyclin-dependent kinase (CDK) that is phosphorylated on Tyr and not with its unphosphorylated isoform. Phosphorylation of the conserved regulatory Tyr-15 is involved in the binding of CDK to PAS2. Loss of the PAS2 function dephosphorylated Arabidopsis thaliana CDKA;1 and upregulated its kinase activity. In accordance with its role as a negative regulator of the cell cycle, overexpression of PAS2 slowed down cell division in suspension cell cultures at the G2-to-M transition and early mitosis and inhibited Arabidopsis seedling growth. The latter was accompanied by altered leaf development and accelerated cotyledon senescence. PAS2 was localized in the cytoplasm of dividing cells but moved into the nucleus upon cell differentiation, suggesting that the balance between cell division and differentiation is regulated through the interaction between CDKA;1 and the antiphosphatase PAS2.  相似文献   

10.
The interleukin-6 (IL-6) stimulates growth in cells such as multiple myeloma and B-cell plasmacytomas/hybridomas, while it inhibits growth in several myeloid leukemia cells. The IL-6 receptor has subunit called gp130. It was reported that Ser-782 of gp130 is phosphorylated by unidentified kinase(s) in cell extracts, and level of gp130 (S782A) transiently expressed on the cell surface of COS-7 is 6-times higher than that of the wild type. These results motivated us to analyze whether the phosphorylation of gp130 at Ser-782 is involved in its degradation or not. In this study, we demonstrated here that treatment of HepG2 cells with okadaic acid (OA), a potent inhibitor for PP2A, promotes phosphorylation of gp 130 at Ser-782 and degradation of gp 130. MG115, a proteasome inhibitor, suppressed this degradation. These effects of OA could not be replaced with tautomycetin (TC), an inhibitor for PP1. Purified PP2A dephosphorylated phospho-Ser-782 of gp130 in vitro. IL-6-induced activation of Stat3 was suppressed by preincubation of the cells with OA, suggesting that the IL-6 signaling pathway was blocked by OA through degradation of gp 130. Taken together, present results strongly suggest that degradation of gp 130 is regulated through a phosphorylation-dephosphorylation mechanism in which PP2A is crucially involved and that gp 130 is a potential therapeutic target in cancers.  相似文献   

11.
The interleukin-6 (IL-6) stimulates growth in cells such as multiple myeloma and B-cell plasmacytomas/hybridomas, while it inhibits growth in several myeloid leukemia cells. The IL-6 receptor has subunit called gp130. It was reported that Ser-782 of gp130 is phosphorylated by unidentified kinase(s) in cell extracts, and level of gp130 (S782A) transiently expressed on the cell surface of COS-7 is 6-times higher than that of the wild type. These results motivated us to analyze whether the phosphorylation of gp130 at Ser-782 is involved in its degradation or not. In this study, we demonstrated here that treatment of HepG2 cells with okadaic acid (OA), a potent inhibitor for PP2A, promotes phosphorylation of gp130 at Ser-782 and degradation of gp130. MG115, a proteasome inhibitor, suppressed this degradation. These effects of OA could not be replaced with tautomycetin (TC), an inhibitor for PP1. Purified PP2A dephosphorylated phospho-Ser-782 of gp130 in vitro. IL-6-induced activation of Stat3 was suppressed by preincubation of the cells with OA, suggesting that the IL-6 signaling pathway was blocked by OA through degradation of gp130. Taken together, present results strongly suggest that degradation of gp130 is regulated through a phosphorylation-dephosphorylation mechanism in which PP2A is crucially involved and that gp130 is a potential therapeutic target in cancers. (Mol Cell Biochem 269: 183–187, 2005)  相似文献   

12.
Wild-type (F/B), constitutively active (F/B*), and three kinase-inactive (F/Ba-, F/Bb-, F/Bc-) forms of Akt/protein kinase B (PKB) were permanently overexpressed in FDCP2 cells. In the absence of insulin-like growth factor-1 (IGF-1), activities of PKB, cyclic nucleotide phosphodiesterase 3B (PDE3B), and PDE4 were similar in nontransfected FDCP2 cells, mock-transfected (F/V) cells, and F/B and F/B- cells. In F/V cells, IGF-1 increased PKB, PDE3B, and PDE4 activities approximately 2-fold. In F/B cells, IGF-1, in a wortmannin-sensitive manner, increased PKB activity approximately 10-fold and PDE3B phosphorylation and activity ( approximately 4-fold), but increased PDE4 to the same extent as in F/V cells. In F/B* cells, in the absence of IGF-1, PKB activity was markedly increased ( approximately 10-fold) and PDE3B was phosphorylated and activated (3- to 4-fold); wortmannin inhibited these effects. In F/B* cells, IGF-1 had little further effect on PKB and activation/phosphorylation of PDE3B. In F/B- cells, IGF-1 activated PDE4, not PDE3B, suggesting that kinase-inactive PKB behaved as a dominant negative with respect to PDE3B activation. Thymidine incorporation was greater in F/B* cells than in F/V cells and was inhibited to a greater extent by PDE3 inhibitors than by rolipram, a PDE4 inhibitor. In F/B cells, IGF-1-induced phosphorylation of the apoptotic protein BAD was inhibited by the PDE3 inhibitor cilostamide. Activated PKB phosphorylated and activated rPDE3B in vitro. These results suggest that PDE3B, not PDE4, is a target of PKB and that activated PDE3B may regulate cAMP pools that modulate effects of PKB on thymidine incorporation and BAD phosphorylation in FDCP2 cells.  相似文献   

13.
Crosstalk between insulin and cAMP signalling pathways has a great impact on adipocyte metabolism. Whilst Protein kinase B (PKB) is a pivotal mediator of insulin action, in some cells regulation of PKB by cAMP has also been demonstrated. Here we provide evidence that, in a phosphatidyl inositol 3-kinase dependent manner, beta3-adrenergic stimulation (using CL316243) in adipocytes induces PKB phosphorylation in the absence of insulin and also potentiates insulin-induced phosphorylation of PKB. Interestingly, insulin- and CL316243-induced PKB phosphorylation was found to be inhibited by pools of cAMP controlled by PDE3B and PDE4 (mainly in the context of insulin), whereas a cAMP pool controlling protein kinase A appeared to mediate stimulation of PKB phosphorylation (mainly in the context of CL316243). Furthermore, an Epac (exchange protein directly activated by cAMP) agonist (8-pCPT-2'-O-Me-cAMP) mimicked the effect of the PDE inhibitors, giving evidence that Epac has an inhibitory effect on PKB phosphorylation in adipocytes. Further, we put the results obtained at the level of PKB in the context of possible downstream signalling components in the regulation of adipocyte metabolism. Thus, we found that overexpression of PKB induced lipogenesis in a PDE3B-dependent manner. Furthermore, overexpression or inhibition of PDE3B was associated with reduced or increased phosphorylation of the key lipogenic enzyme acetyl-CoA carboxylase (ACC), respectively. These PDE3B-dependent effects on ACC correlated with changes in lipogenesis. The Epac agonist, 8-pCPT-2'-O-Me-cAMP, mimicked the effect of PDE3B inhibition on ACC phosphorylation and lipogenesis.  相似文献   

14.
Recently, we have shown that protein kinase C (PKC) activated by phorbol 12-myristate 13-acetate (PMA) attenuates the beta1-adrenergic receptor (beta1-AR)-mediated lipolysis in rat adipocytes. Stimulation of cells by insulin, angiotensin II, and alpha1-AR agonist is known to cause activation of PKC. In this study, we found that lipolysis induced by the beta1-AR agonist dobutamine is decreased and is no longer inhibited by PMA in adipocytes that have been treated with 20 nM insulin for 30 min followed by washing out insulin. Such effects on lipolysis were not found after pretreatment with angiotensin II and alpha1-AR agonists. The rate of lipolysis in the insulin-treated cells was normalized by the PKCalpha- and beta-specific inhibitor G? 6976 and PKCbeta-specific inhibitor LY 333531. In the insulin-treated cells, wortmannin increased lipolysis and recovered the lipolysis-attenuating effect of PMA. Western blot analysis revealed that insulin slightly increases membrane-bound PKCalpha, betaI, and delta, and wortmannin decreases PKCbetaI, betaII, and delta in the membrane fraction. These results indicate that stimulation of insulin receptor induces a sustained activation of PKC-dependent antilipolysis in rat adipocytes.  相似文献   

15.
Protein phosphatase 4 (PP4, previously named protein phosphatase X (PPX)), a PP2A-related serine/threonine phosphatase, has been shown to be involved in essential cellular processes, such as microtubule growth and nuclear factor kappa B activation. We provide evidence that PP4 is involved in tumor necrosis factor (TNF)-alpha signaling in human embryonic kidney 293T (HEK293T) cells. Treatment of HEK293T cells with TNF-alpha resulted in time-dependent activation of endogenous PP4, peaking at 10 min, as well as increased serine and threonine phosphorylation of PP4. We also found that PP4 is involved in relaying the TNF-alpha signal to c-Jun N-terminal kinase (JNK) as indicated by the ability of PP4-RL, a dominant-negative PP4 mutant, to block TNF-alpha-induced JNK activation. Moreover, the response of JNK to TNF-alpha was inhibited in HEK293 cells stably expressing PP4-RL in comparison to parental HEK293 cells. The involvement of PP4 in JNK signaling was further demonstrated by the specific activation of JNK, but not p38 and ERK2, by PP4 in transient transfection assays. However, no direct PP4-JNK interaction was detected, suggesting that PP4 exerts its positive regulatory effect on JNK in an indirect manner. Taken together, these data indicate that PP4 is a signaling component of the JNK cascade and involved in relaying the TNF-alpha signal to the JNK pathway.  相似文献   

16.
17.
18.
Forward swimming of the Triton-extracted model of Paramecium is stimulated by cAMP. Backward swimming of the model induced by Ca(2+) is depressed by cAMP. Cyclic AMP and Ca(2+) act antagonistically in setting the direction of the ciliary beat. Some ciliary axonemal proteins from Paramecium caudatum are phosphorylated in a cAMP-dependent manner. In the presence of cAMP, axonemal 29- and 65-kDa polypeptides were phosphorylated by endogenous A-kinase in vitro. These phosphoproteins, however, were not dephosphorylated after in vitro phosphorylation, presumably because of the low endogenous phosphoprotein phosphatase activity associated with isolated axonemes. We purified the protein phosphatase that specifically dephosphorylated the 29- and 65-kDa phosphoproteins from Paramecium caudatum. The molecular weight of the protein phosphatase was 33 kDa. The protein phosphatase had common characteristics as protein phosphatase 2C (PP2C). The characteristics of the protein phosphatase were the same as those of the PP2C from Paramecium tetraurelia (PtPP2C) [Grothe et al., 1998: J. Biol. Chem. 273:19167-19172]. We concluded that the phosphoprotein phosphatase is the PP2C from Paramecium caudatum (PcPP2C). The PcPP2C markedly accelerated the backward swimming of the Triton-extracted model in the presence of Ca(2+). On the other hand, the PcPP2C slightly depressed the forward swimming speed. This indicates that the PP2C plays a role in the cAMP-dependent regulation of ciliary movement in Paramecium caudatum through dephosphorylation of 29- and/or 65-kDa regulatory phosphoproteins by terminating the action of cAMP.  相似文献   

19.
Protein kinase B (PKB), also known as Akt or RAC-PK, is a serine/threonine kinase that can be activated by growth factors via phosphatidylinositol 3-kinase. In this article we show that PKCzeta but not PKCalpha and PKCdelta can co-immunoprecipitate PKB from CHO cell lysates. Association of PKB with PKCzeta was also found in COS-1 cells transiently expressing PKB and PKCzeta, and moreover we found that this association is mediated by the AH domain of PKB. Stimulation of COS-1 cells with platelet-derived growth factor (PDGF) resulted in a decrease in the PKB-PKCzeta interaction. The use of kinase-inactive mutants of both kinases revealed that dissociation of the complex depends upon PKB activity. Analysis of the activities of the interacting kinases showed that PDGF-induced activation of PKCzeta was not affected by co-expression of PKB. However, both PDGF- and p110-CAAX-induced activation of PKB were significantly abolished in cells co-expressing PKCzeta. In contrast, co-expression of a kinase-dead PKCzeta mutant showed an increased induction of PKB activity upon PDGF treatment. Downstream signaling of PKB, such as the inhibition of glycogen synthase kinase-3, was also reduced by co-expression of PKCzeta. A clear inhibitory effect of PKCzeta was found on the constitutively active double PKB mutant (T308D/S473D). In summary, our results demonstrate that PKB interacts with PKCzeta in vivo and that PKCzeta acts as a negative regulator of PKB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号