共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen mineralization from 15N labelled red clover (Trifolium pratense L.) and yellow sweetclover (Melilotus officinalis Lam.) plant fractions of three different ages (8-, 14- and 20-week old) was studied in an out-door pot experiment during 8.5 months. Individual plant fractions (leaves/stems/roots/flowers), 23 g dry matter pot-1 (corresponding to 7300 kg ha-1), were incorporated into a sandy soil. The net mineralization of N was measured as 15N recovery in spring wheat (Triticum æstivum L.), perennial ryegrass (Lolium perenne L.) following the wheat and in the soil mineral N pool. Dry matter and N yields of the wheat crop were largest in pots receiving the legume leaf materials and the oldest root fractions. The largest amount of net N mineralized was obtained after application of sweetclover leaves, 381 mg N pot-1 (38% of added N), and a smaller amount was measured from red clover leaves, 215 mg N pot-1 (26% of added N). The N release was much smaller from the stems, being on average 63 mg N pot-1 (15% of added N), with intermediate values obtained from roots, 152 mg N pot-1 (26% of added N). The effects of age of the legume fractions on net N mineralization were more pronounced for sweetclover than for red clover materials. Greater net N release was obtained from sweetclover leaves and roots with inceasing age, but the opposite was valid for stems. At final harvest of the ryegrass, an additional 2.8% of added legume N was mineralized, compared with at wheat harvest. The net N mineralized proportion of added N was significantly related to concentrations of N and cell wall constituents in the plant material. Differences in net N mineralization estimates were generally larger between plant fractions than between materials of different age, implying that leaf proportion of the above-ground biomass is of great importance when predicting net N mineralization from green-manure plant materials. In addition, the contribution from roots to net mineralized legume N could be substantial. 相似文献
2.
Green manure application may benefit subsequent crops not only by improving nitrogen (N) fertility but also via non-nutritional
mechanisms. The quantification of the latter effect, however, is complicated by the confounding effect of N fertility. Two
experiments were conducted in controlled environments to partition the yield response of barley to green manure between N
and non-nutritional effects. Each experiment included a factorial of fertilizer N application rates and green manure application
rates. The fertilizer was labelled with 15N to facilitate discrimination between N sources. Approximately 24% of the N applied in green manure was assimilated by barley
after 45 days (Experiment 1) and 32% was recovered by barley grown to maturity (Experiment 2). Apparent recovery of green
manure-N by barley was not appreciably affected by fertilizer application. Regression analysis of the relationship between
dry matter yield and plant N uptake demonstrated that yield responses to green manure application were not entirely attributable
to improved N fertility. For a given amount of N assimilated by the crop, yields were higher in green manure-amended treatments
than in those receiving no green manure. In barley grown to maturity, barley response to N and non-nutritional effects were
estimated to be 5.3 and 2.2g pot−1, respectively. The relationship between dry matter yield and N uptake is suggested as a method for distinguishing nutritional
and non-nutritional yield responses. This approach assumes that no other nutrient is limiting growth. The presence of non-nutritional
benefits observed in this study demonstrates that the agronomic value of green manure is not limited to N release and casts
doubt on the assumptions inherent to calculation of fertilizer equivalents.
Contribution 3879132
Contribution 3879132 相似文献
3.
Ola Palm W. Lionel Weerakoon M. Ananda P. de Silva Thomas Rosswall 《Plant and Soil》1988,108(2):201-209
Sesbania sesban was evaluated as green manure crop for lowland rice in the Dry Zone of Sri Lanka. The legume was grown during a fallow period
before lowland rice (Oryza sativa) and ploughed under just before transplanting. Weight loss and nitrogen content in litterbags containing leaves, stems and
roots of the legume were monitored. Comparisons were made between rice yields from 20 m2 plots after green manuring in combination with different nitrogen fertilizer levels (0, 2.4, 4.8 and 7.2 gm−2) and nitrogen fertilizer (9.6 gm−2) alone. Above-ground biomass ofS. sesban was 440 gm−2 (dry wt) when ploughed under after 84 days growth. N-content in leaves, stems and roots was 3.76%, 0.41% and 0.73%, respectively.
This gave a N-input fromS. sesban of 9.2 gm−2 (8.3 g from above-ground parts and 0.9 g from roots). The corresponding K and P inputs were 7.3 and 0.6 gm−2 respectively. The nitrogen rich leaves, which contained 88% of the nitrogen in the above-ground parts, decomposed and released
its nitrogen much more rapidly than the stems and roots. After only four days the leaves had released 5.3 g Nm−2 and after 14 days they had released 6.4 g Nm−2. The highest rice yield (505 gm−2) was obtained usingS. sesban and 4.8 gm−2 of N-fertilizer. The yields with only N-fertilizer or onlyS. sesban were 442 gm−2 and 396 gm−2, respectively. Due to the rapid decomposition of the nitrogen rich leaves,S. sesban did not behave as a slow release fertilizer. Thus, it is not necessary to apply nitrogen fertilizers as a basal dose. 相似文献
4.
A field experiment was carried out at a pilot plot that was cropped with oilseed rape, and then left partly fallow and partly
cropped with a green manure (mustard) during the autumn after harvest of the oilseed rape. The rape residues were incorporated
in the soil. Methods used to quantify the N fluxes from harvest until sowing of the next crop were (1) 15N balance method, (2) total mineral N analysis and (3) NO emission measurements. Losses of spring applied fertilizer N were
negligible in cropped plots and minimal in fallow plots during the following autumn-winter period. Most of the plant-N residues
was retained by the organic N pool of the upper 30-cm soil layer. The green manure contributed slightly to soil available
N at sowing of the next crop. However, the incorporation of plant material resulted in a nitrate flux that was at risk of
leaching on the fallow plots, and on the green manure plots after incorporation of the green manure. This nitrate was largely
derived from soil organic N, not from unused fertilizer applied in spring or from immobilized fertilizer.
The NO emissions from the green manure plots were significantly higher than emissions from the fallow plots. The plants had
a stimulating effect on the NO emission. A relationship between the NO emission and the soil nitrate concentration could not
be established. No emissions were measured after green manure incorporation due to the low temperatures at the pilot plot.
However, a greenhouse experiment showed an increased emission after incorporation. The NO emissions seemed to be related with
the soil ammonium concentration. 相似文献
5.
在森林土壤中,无机氮的垂直移动速率较快,因此大气氮沉降极有可能对下层森林土壤造成较大影响,且表层土壤往往与下层土壤的物理化学特性和所处环境差异较大,因此土壤剖面中不同深度的土壤对大气氮沉降的响应可能存在较大差异。以往研究表明,"华西雨屏"区的年均氮湿沉降量高达95 kg N hm-2 a-1,处于中国最高水平,该森林生态系统出现一定氮饱和特征。基于以上背景,研究华西雨屏区常绿阔叶林不同深度土壤氮矿化及相关酶活性对模拟氮沉降的响应,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g N hm-2 a-1)、低氮(LN,+5 g N hm-2 a-1)和高氮(HN,+15 g N hm-2 a-1)3个氮添加水平。在氮沉降进行5年后进行土壤采样,测定不同深度土壤(上层0-15 cm、中层15-30 cm、下层30-45 cm)全氮(TN)、硝态氮(NO3--N)、铵态氮(NH4+-N)含量及氮矿化相关酶活性。结果表明:(1)该常绿阔叶次生林不同深度土壤TN有显著差异;(2)模拟氮沉降对该系统土壤氮矿化总体表现出极显著抑制作用,其中中层土壤抑制作用最为强烈,净氮矿化速率主要受硝化过程的影响;(3)氮矿化相关酶活性均随土壤深度的加深而降低,模拟氮沉降对土壤脲酶活性有极显著促进作用,对土壤硝酸还原酶活性有显著抑制作用。由于无机氮在土壤剖面中的高度可移动性,深层土壤氮循环和特征对氮沉降的响应需要更加密切的关注。 相似文献
6.
Cowpea [Vigna unguiculata (L). Walp.] has great potential as green manure due to its rapid N accumulation and efficient N2 fixation. The objective of this study was to measure the rate of N mineralization from cowpea plant parts harvested at onset
of flowering (5 weeks) and mid pod-fill (7 weeks) under near optimum conditions. Cowpeas were grown in a greenhouse and supplied
with 15NH4
15NO3 to isotopically label tissue. Cowpea leaves, stems, and roots were incorporated into a sandy soil (Psammentic Paleustalf)
and net N mineralized was measured several times during a 10 week incubation. The amount of N accumulated in 7-week old cowpeas
was more than double that in 5-week old cowpeas. The portion of N mineralized after 10 weeks was 24% for 5-week old cowpeas
and 27% for 7-week old cowpeas. The rate of N mineralization from leaves and stems increased with plant age, but decreased
for roots. The amount of N mineralized from 7-week old cowpeas was more than double (235%) that from 5-week old cowpeas due
to greater N accumulation and a more rapid rate of N mineralization of the more mature cowpeas. The greatest amount of N was
released from leaves, which amounted to 74 and 65% of total N mineralization from 5- and 7-week old cowpeas, respectively.
The percentage of N mineralized by 10 weeks was linearly related to the tissue N concentration of the plant parts and to their
C/N ratio. These relationships allow a quick estimation of the amount of N that would mineralize from cowpea residues incorporated
into soil based on their N concentration or C/N ratio. 相似文献
7.
Effect of rainfall pattern on nitrogen mineralization and leaching in a green manure experiment in South Rwanda 总被引:1,自引:0,他引:1
The effects of green manures, sorghum residues and farmyard manure on N dynamics and crop yields were studied during three dry and wet seasons on a Typic Sombriudox in South Rwanda. In addition, a resin core study was conducted within a 4-year green manure field experiment to follow the seasonal pattern of N mineralization and leaching after application of residues from Tephrosia vogelii, Sorghum bicolor, a mixture of both materials, and farmyard manure.During the dry season, topsoil (0–20 cm) mineral N remained constant. At the beginning of the wet season, the rainfall pattern determined N availability. With low rainfall intensities a mineralization flush occurred, doubling topsoil mineral N concentrations within 5 days after wetting. In contrast, under heavy rains at the onset of the rainy season, topsoil mineral N decreased by 50–70% within the first two weeks.The application of organic fertilizers has a strong influence on N availability, but the effects can be negated by heavy rainfall. Incorporation of leaves from Tephrosia vogelii (2.7 t dm ha-1) and farmyard manure (7 t dm ha-1) doubled the mineralization flush after the first rains. During the rest of the wet season, N release by the green manure was small, whereas the farmyard manure was found to mobilize N after a period of N immobilization. Incorporation of sorghum residues had only a small effect, while mixing the straw with green and farmyard manure immobilized N temporarily.Nitrogen leaching, measured by exchange resins at a depth of 20 cm, was increased up to 50% by the incorporation of green and farmyard manure. This points to rapid N translocation of easily mineralizable N. The additional incorporation of sorghum residues reduced N leaching of both materials significantly. Since rainfall is often unpredictable, the synchronization of N released from crop residues with crop N demand may require additional management practices. 相似文献
8.
Nitrogen mineralization and potential nitrification at different depths in acid forest soils 总被引:2,自引:0,他引:2
Yield decline of cereals grown in monoculture may be alleviated with alternative crop management strategies. Crop rotation and optimized tillage and fertilizer management can contribute to more sustainable food and fiber production in the long-term by increasing diversity, maintaining soil organic matter (SOM), and reducing adverse effects of excessive N application on water quality. We investigated the effects of crop sequence, tillage, and N fertilization on long-term grain production on an alluvial, silty clay loam soil in southcentral Texas. Crop sequences consisted of monoculture sorghum (Sorghum bicolor (L.) Moench,) wheat (Triticum aestivum L.), and soybean (Glycine max (L.) Merr), wheat/soybean double-crop, and rotation of sorghum with wheat/soybean. Grain yields tended to be lower with no tillage (NT) than with conventional tillage (CT) early in the study and became more similar after 11 years. Nitrogen fertilizer required to produce 95% to maximum sorghum yield was similar for monoculture and rotation upon initiation of the experiment and averaged 16 and 11 mg N g-1 grain with NT and CT, respectively. After 11 years, however, the N fertilizer requirement became similar for both tillage regimes, but was greater in monoculture (17 mg N g-1 grain) than in rotation (12 mg N g-1 grain). Crop sequences with double-cropping resulted in greater land use efficiency because similar or lower amounts of N fertilizer were required to produce equivalent grain than with less intensive monoculture systems. These more intensive crop sequences produced more stover with higher N quality primarily due to the inclusion of soybean in the rotation. Large quantities of stover that remained on the soil surface with NT led to greater SOM content, which increased the internal cycling of nutrients in this soil. In southcentral Texas, where rainfall averages nearly 1000 mm yr-1, more intensive cropping of sorghum, wheat, and soybean with moderate N fertilization using reduced tillage can increase grain production and potentially decrease N losses to the environment by cycling more N into the crop-SOM system. 相似文献
9.
Vertical and horizontal development of the root system of carrots following green manure 总被引:5,自引:0,他引:5
Cover crops grown as green manure or for other purposes will affect nitrogen (N) distribution in the soil, and may thereby
alter root growth of a succeeding crop. During two years, experiments were performed to study effects of nitrogen supply by
green manure on root development of carrots (Daucus carota L). Total root intensity (roots cm−2 on minirhizotrons) was significantly affected by the green manures, and was highest in the control plots where no green manure
had been grown. Spread of the root system into the interrow soil was also affected by green manure treatments, as the spread
was reduced where spring topsoil Nmin was high. Although N supply and distribution in the soil profile differed strongly among the treatments, no effect was observed
on the rooting depth of the carrot crops. Across all treatments the rooting front penetrated at a rate of 0.82 and 0.68 mm
day−1 °C−1 beneath the crop rows and in the interrow soil, respectively. The minirhizotrons only allowed measurements down to 1 m, and
the roots reached this depth before harvest. Extrapolating the linear relationship between temperature sum and rooting depth
until harvest would lead to rooting depths of 1.59 and 1.18 m under the crop rows and in the interrow soil respectively. Soil
analysis showed that the carrot crop was able to reduce Nmin to very low levels even in the 0.75 to 1.0 m soil layer, which is in accordance with the root measurements. Still, where
well supplied, the carrots left up 90 kg N ha−1 in the soil at harvest. This seemed to be related to a limited N uptake capacity of the carrots rather than to insufficient
root growth in the top metre of the soil.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
10.
Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2] 总被引:1,自引:0,他引:1
Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine‐root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our study was conducted in a CO2‐enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used 15N isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were twofold: (1) to determine whether N is available for root acquisition in deeper soil and (2) to determine whether elevated [CO2], which has increased inputs of labile C resulting from greater fine‐root mortality at depth, has altered N cycling rates. Although gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where rates of microbial consumption of mineral N were reduced relative to production. Overall, up to 60% of potential gross N mineralization and 100% of potential net N mineralization occurred below 15 cm depth at this site. This finding was supported by in situ measurements from ion‐exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2. 相似文献
11.
To validate earlier findings using 32P in upland soil and at different depths in lowland soil, ryegrass varieties S.23 or Titania were grown in mixtures with white clover varieties S.184 or Olwen. Unlabelled phosphate (0 or 43 kg P/ha) was applied to the surface or at 30 cm depth in lowland soil, and dry matter yields of grass and clover were measured. In June, on lowland soil, the greatest yield of clover was obtained by surface application. The most productive mixture was S.23/Olwen, although in August Titania outyielded S.23. By October S.23 again outyielded Titania. These results validated the isotopically discovered interactions between phosphate depth and grass/clover mixtures. On upland peat and mineral soil, 0 or 43 kg P/ha was surface applied to the same varietal mixtures. In May, phosphate application to mineral soil slightly decreased clover presence, while clover was increased by mixture with Titania rather than S.23. In July, no significant phosphate effects were found, but in October phosphate increased clover yield and, at least on mineral soil, S.23/Olwen responded most. 相似文献
12.
I. J. Manguiat G. B. Mascariña J. K. Ladha R. J. Buresh J. Tallada 《Plant and Soil》1994,160(1):131-137
Field experiments were conducted under flooded soil conditions using Maahas clay amended with urea and rice straw-sesbania mixtures during the wet and dry seasons. Parallel laboratory incubation tests were done. The objectives were 1) to determine N mineralization patterns and establish the relationship between mineralization parameters and either N availability or grain yield, and 2) to correlate the results of organic N mineralization studies in the laboratory with data from field experiments. The N mineralization patterns of flooded soils in the laboratory followed a logistic function. In laboratory studies, mineralization potential was positively correlated with extractable soil NH4
+-N at the end of the incubation period (cumulative available N). Likewise, mineralization potential calculated from laboratory studies was positively correlated with N uptake and grain yield from field studies. Extractable (NH4
++NO3
–)-N in the field correlated positively with extractable NH4
+-N in the laboratory. The extractable NH4
+-N from laboratory incubations at 14 days after transplanting, panicle initiation, and maturity was also highly and positively correlated with grain yield from field experiments. 相似文献
13.
豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响 总被引:10,自引:0,他引:10
通过2a田间定位试验,研究渭北旱塬地区夏闲期插播并翻压不同豆科绿肥(长武怀豆、大豆和绿豆)以及小麦生长季不同施氮量(0,108,135,162 kg/hm2)对麦田土壤肥力性状的影响,以期为提高旱地土壤质量提供理论依据.试验结果表明:(1)种植豆科绿肥能显著提高土壤有机质、活性有机质和全氮含量,增加土壤碳库管理指数(CPMI),对土壤速效钾含量没有显著影响;(2)绿豆还田量高于长武怀豆和大豆,然而土壤培肥效果逊于长武怀豆和大豆;(3)夏闲期种植绿肥明显消耗了土壤水分,导致绿肥翻压前、小麦播前直至收获后,0-200 cm土壤贮水量显著低于休闲处理,但耗水量与休闲没有明显差异,由于小麦产量显著增加,因此豆科绿肥显著提高了水分生产效率;(4)与不施氮相比,小麦生长季施用氮肥能显著增加土壤水分生产效率,却对土壤各肥力性状的影响均不显著.夏闲期种植并翻压豆科绿肥是旱地培肥土壤、提高水分生产效率的有效途径. 相似文献
14.
Manguiat I.J. Singleton P.W. Rocamora P.M. Calo M.U. Taleon E.E. 《Plant and Soil》1997,192(2):321-331
Two field experiments on green manuring were conducted under upland acidic soil (pH = 4.35) conditions with the following objectives: (1) to determine the influence of inoculation site, P fertilization, and liming on the biomass production, N content, N accumulation, and N availability of S. rostrata grown in an acidic soil, (2) to compare the effectiveness of S. rostrata, P. calcaratus and urea as N sources for upland rice as affected by liming and N source-sowing time combination, and (3) to assess the effect of liming and N source-sowing time combination on % Ndff (N derived from the fertilizer), % Ndfs (N derived from soil), % FNU (fertilizer N utilization), and FNY or fertilizer N yield (kg N ha–1) of upland rice grown in acidic soil. At 2 weeks after incorporating S. rostrata (95 days after lime application), liming significantly increased N availability by more than 2-fold suggesting that the decomposition of S. rostrata by soil microflora was stimulated by lime. Liming, phosphorus application, and inoculation site improved significantly the dry biomass production, N content and N accumulation of S. rostrata; thus, enhancing its green manuring potential. Regardless of liming, S. rostrata whether applied at 0 week or 2 weeks before sowing was superior to urea in improving grain and straw yields. P. calcaratus when applied at 2 weeks before sowing also produced higher grain yield than urea. Immediate sowing of upland rice after green manure incorporation did not affect negatively the growth and development of upland rice; hence, farmers could save at least 2 weeks in their cropping calendar. N source-sowing time combination had a highly significant influence on % Ndff, % Ndfs, % FNU, N uptake, and fertilizer N yield of upland rice. However, only N uptake was influenced significantly by liming. The rice plant obtained significantly higher % Ndfs from the soils treated with green manure than those treated with urea regardless of liming. The % FNU and % Ndff from the green manures were 11-37% and 9-25%, respectively. These values are much lower than those obtained under continuously flooded soil conditions possibly because of the differences in the organic matter decomposer populations and N loss mechanisms between sloping upland conditions and continuously flooded conditions. 相似文献
15.
The fate of15N-labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions 总被引:2,自引:1,他引:2
The fate of nitrogen from15N-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991,15N-labelled sheep faeces (87 kg N ha–1) plus unlabelled (NH4)2SO4 (90 kg N ha–1), and (15NH4)2SO4 (90 kg N ha–1) were each applied to three soils; soil 1 (100% soil + 0% quartz sand), soil 2 (50% soil + 50% quartz sand) and soil 3 (25% soil + 75% quartz sand). The lysimeters were cropped with spring barley (Hordeum vulgare L.) and undersown ryegrass (Lolium perenne L.). The barley crop recovered 16–17% of the labelled manure N and 56% of the labelled (NH4)2SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)2SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley uptake of manure N by difference of N uptake between manured and unmanured soils, indicated that 4%, 10% and 14% of the applied manure N was recovered in barley grown on soil-sand mixtures with 16%, 8% and 4% clay, respectively. The results indicated that the mineralization of labelled manure N was similar in the three soil-sand mixtures, but that the manure caused a higher immobilization of unlabelled ammonium-N in the soil with the highest clay content. Some of the immobilized N apparently was remineralized during the autumn and the subsequent growth season. After 18 months, 11–19% of the labelled manure N was found in the subsoil (10–45 cm) of the lysimeters, most of this labelled N probably transported to depth as organic forms by leaching or through the activities of soil fauna. In unplanted soils 67–74% of the labelled manure N was recovered in organic form in the 0–10 cm soil layer after 4 months, declining to 55–64% after 18 months. The lowest recovery of labelled N in top-soil was found in the soil-sand mixture with the lowest clay content. The mass balance of15N showed that the total recovery of labelled N was close to 100%. Thus, no significant gaseous losses of labelled N occurred during the experiment. 相似文献
16.
通过4年田间定位试验比较了3种轮作及相应绿肥不同利用方式对作物产量和土壤性质的影响.轮作方式包括夏休闲-冬小麦(对照)、豆类绿肥-冬小麦和豆类绿肥-春玉米-冬小麦.豆类绿肥-冬小麦包括3种绿肥利用方式:提前覆盖、提前翻压和播前翻压;豆类绿肥-春玉米-冬小麦也包括3种绿肥利用方式:豆类茎秆覆盖、茎秆翻压和茎秆移出田间.结果表明:对于豆类绿肥-冬小麦轮作,绿肥消耗了更多小麦播前土壤水,使小麦产量不稳定;麦收后0~200 cm土层硝态氮储量显著高于另外两种轮作,有更高的淋失风险;该轮作方式下提前覆盖处理0~20 cm土层土壤有机碳(SOC)含量和有机碳储量(SSOC)最高.对于豆类绿肥-春玉米-冬小麦轮作,小麦播前土壤储水量显著高于豆类绿肥-冬小麦,小麦产量更稳定;麦收后0~200 cm土层硝态氮储量显著低于豆类绿肥-冬小麦轮作,淋失风险较低;该轮作方式下茎杆覆盖处理0~20 cm土层土壤SOC含量显著高于茎杆移出处理,且SSOC相对于试验初始也有所增加.可见,豆类绿肥-春玉米-冬小麦轮作体系中豆类收获籽粒后茎杆地表覆盖方式,在提高小麦播前土壤储水量、稳定产量、培肥土壤和降低0~200 cm土层土壤硝态氮残留量上表现较好,是具有类似气候地区的合理种植制度.
相似文献
17.
乌兰布和沙漠东北缘三种豆科绿肥植物生物量和养分含量及其对土壤肥力的影响 总被引:11,自引:0,他引:11
土壤肥力是限制乌兰布和沙漠东北缘沿黄灌区建立高产绿洲的主要因子之一。在内蒙古自治区磴口县试验地种植3种绿肥植物,比较它们改良土壤的效果。结果表明,1~2年生紫花苜蓿的总生物量干重为最高,而沙打旺则因其抗风沙能力强,地上部分生长较其它两种植物为好,由于植株中水分含量较高,其生物量的鲜重在三者中是最高的。2年生绿肥植物总生物量干重和养分含量的测定结果则显示,全氮和全磷含量的变化趋势为沙打旺〉紫花苜蓿〉草木樨,而全钾含量则为紫花苜蓿〉草木樨〉沙打旺;从3种植物对土壤改良效果来看,改良作用为沙打旺〉紫花苜蓿〉草木樨。与两种常用的绿肥作物相比,沙打旺因其对风沙较强的抗性而具有较高的改良土壤能力,因此在同类型的沙漠绿洲开发初期可以作为改良土壤的首选植物。 相似文献
18.
Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils 下载免费PDF全文
Biochar is a pyrolysed biomass and largely consists of pyrogenic carbon (C), which takes much longer to decompose compared to the biomass it is made from. When applied to soil, it could increase agricultural productivity through nutrient retention and changing soil properties. The biochar‐mediated nutrient retention capacity depends on the biochar properties, which change with time, and on soil properties. Here, we examined the effects of a wood biochar (20 t ha?1), that has aged (21 months) in a grassland field, on gross nitrogen (N) mineralization (GNM) and 15N recovery using a 15N tracer. A field experiment was conducted in two soil types, that is a Tenosol and a Dermosol, and also included a phosphorus (P) addition treatment (1 kg ha?1). Compared to the control, biochar with P addition significantly increased GNM in the Tenosol. Possibly, biochar and P addition enhanced nutrient availability in this nutrient‐limited soil, thereby stimulating microbial activity. In contrast, biochar addition reduced GNM in the Dermosol, possibly by protecting soil organic matter (SOM) from decomposition through sorption onto biochar surfaces and enhanced formation of organo‐mineral complexes in this soil that had a higher clay content (29% vs. 8% in the Tenosol). Compared to the control, biochar significantly increased total 15N recovery in the Tenosol (on average by 12%) and reduced leaching to subsurface soil layers (on average by 52%). Overall, 15N recovery was greater in the Dermosol (83%) than the Tenosol (63%), but was not affected by biochar or P. The increased N recovery with biochar addition in the sandy Tenosol may be due to retention at exchange sites on aged biochar, while such beneficial effects may not be visible in soils with higher clay content. Our results suggest that aged biochar may increase N use efficiency through reduced leaching or gaseous losses in sandy soils. 相似文献
19.
A computer simulation model of the turnover of organic matter in soil was adapted to simulate the change in soil organic C
and N contents of soil during several years following annual additions of farm slurry to maize fields. The model proved successful
in estimating the build-up of both C and N in soil and the leaching of N to ground-water in response to applications of slurry
ranging from 50 to 300 tons per hectare per year. The model was then used to estimate the build-up of organic matter in soil
under crops of fodder maize that were grown using the excess of manure produced during the last 20 years in the Netherlands.
The build-up of organic matter from these applications was estimated to lead to about 70 kg extra nitrogen mineralized ha-1 yr-1. As a result of legislation manure applications have decreased and are expected to decrease further in the immediate future.
Calculations suggest that after 10 years of manure applied at rates no longer exceeding the amount needed to replace the phosphorus
removed by crops, the extra mineralization of N will still be between 45 and 60 kg ha-1 yr-1. If manure applications cease altogether then the extra mineralization will be about 25–30 kg N ha-1 yr-1. 相似文献
20.
Release of N, retention in soil, availability to a subsequent crop and total recovery of N derived from different15N-labelled plant materials decomposing in soil was investigated in two field experiments. In the first experiment five different
plant species (white clover, red clover, subterranean clover, field bean and timothy) and in the second subterranean clover
of different maturity (2,3 and 4 months old) were buried in mesh bags in the soil and allowed to decompose for 10 and 4 months,
respectively.
Most of the N released from the decaying plant materials was retained in the soil (27–46% of input). The subsequent crop (barley)
took up 6–25% of input. The uptake correlated with the amount of N released from the decomposing material (r=0.936*, I experiment). Similar amounts of subterranean clover N were taken up by barley regardless to whether the material was buried
in soil in the previous autumn or just before sowing of the crop. At the end of the experiments, the total recovery of the
introduced plant-derived N varied between 89 and 102%. The results present evidence that the ability of the soil to retain
plant-derived N is strong in comparison with the ability of the subsequent crop and different loss mechanisms to remove it. 相似文献