首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src homology-2-containing proteins (Src). Here, we applied the bioluminescence resonance energy transfer 2 (BRET2) technique to study the IR signaling pathways. The interaction between the IR and the substrates IRS1, IRS4 and Shc was examined in response to ligands with different signaling properties. The association between IR and the interacting partners could successfully be monitored when co-expressing green fluorescent protein 2 (GFP2) tagged substrates with Renilla reniformis luciferase 8 (Rluc8) tagged IR. Through additional optimization steps, we developed a stable and flexible BRET2 assay for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can be applied to study IR signaling pathways, and that this assay can be used as a platform for screening and characterization of IR ligands.  相似文献   

2.
Here we describe a homogeneous assay for biotin based on bioluminescence resonance energy transfer (BRET) between aequorin and enhanced green fluorescent protein (EGFP). The fusions of aequorin with streptavidin (SAV) and EGFP with biotin carboxyl carrier protein (BCCP) were purified after expression of the corresponding genes in Escherichia coli cells. Association of SAV-aequorin and BCCP-EGFP fusions was followed by BRET between aequorin (donor) and EGFP (acceptor), resulting in significantly increasing 510 nm and decreasing 470 nm bioluminescence intensity. It was shown that free biotin inhibited BRET due to its competition with BCCP-EGFP for binding to SAV-aequorin. These properties were exploited to demonstrate competitive homogeneous BRET assay for biotin.  相似文献   

3.
The reported data for compound screening with the bioluminescence resonance energy transfer (BRET2) assay is very limited, and several questions remain unaddressed, such as the behavior of agonists. Eleven beta2 adrenergic receptor (beta2-AR) agonists were tested for full or partial agonism in an improved version of the receptor/beta-arrestin2 BRET2 assay and in 2 cyclic adenosine monophosphate (cAMP) assays (column cAMP assay and ALPHAscreen cAMP assay). Tested in the highly sensitive ALPHAscreen cAMP assay, all selected agonists behaved as full agonists, using isoproterenol as a reference compound. In the less sensitive column cAMP assay, ephedrine and dopamine had a clear partial response. For the BRET2 assay, a highly graded picture was obtained. Moreover, beta2-AR antagonists were tested for inverse agonism. Pronounced inverse agonism was detected in the ALPHAscreen cAMP assay. Only marginal inverse agonistic responses were seen for alprenolol and pindolol in the column cAMP assay, and no inverse agonism was seen in the BRET2 assay. For the beta2-AR, the BRET2 assay may be superior for secondary screening of agonists where a separation of full and partial agonists is needed and the ALPHAscreen cAMP assay may be preferred for primary screening of agonists where all receptor activating compounds are desired.  相似文献   

4.
5.
In BRET2 (Bioluminescence Resonance Energy Transfer), a Renilla luciferase (RLuc) is used as the donor protein, while a Green Fluorescent Protein (GFP2) is used as the acceptor protein. In the presence of the cell permeable substrate DeepBlueC, RLuc emits blue light at 395 nm. If the GFP2 is brought into close proximity to RLuc via a specific biomolecular interaction, the GFP2 will absorb the blue light energy and reemit green light at 510nm. BRET2 signals are therefore easily determined by measuring the ratio of green over blue light (510/395nm) using appropriate dual channel luminometry instruments (e.g., Fusion Universal Microplate Analyzer, Packard BioScience). Since no light source is required for BRET2 assays, the technology does not suffer from high fluorescent background or photobleaching, the common problems associated with standard FRET-based assays. Using BRET2, we developed a generic G Protein-Coupled Receptor (GPCR) assay based on the observation that activation of the majority of GPCRs by agonists leads to the interaction of beta-arrestin (a protein that is involved in receptor desensitization and sequestration) with the receptor. We established a cell line stably expressing the GFP2:beta-arrestin 2 fusion protein, and showed that it can be used to monitor the activation of various transiently expressed GPCRs, in BRET2/arrestin assays. In addition, using the HEK 293/GFP2:beta-arrestin 2 cell line as a recipient, we generated a double-stable line co-expressing the vasopressin 2 receptor (V2R) fused to RLuc (V2R:RLuc) and used it for the pharmacological characterization of compounds in BRET2/arrestin assays. This approach yields genuine pharmacology and supports the BRET2/arrestin assay as a tool that can be used with recombinant cell lines to characterize ligand-GPCR interactions which can be applied to ligand identification for orphan receptors.  相似文献   

6.
Bioluminescence energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. We directly compared two recently developed variants of Renilla luciferase (RLuc), RLuc2 and RLuc8, as BRET donors using an in vitro thrombin assay. The comparison was carried out by placing a thrombin-specific cleavage sequence between the donor luciferase and a green fluorescent protein (GFP(2)) acceptor. Substitution of native RLuc with the RLuc mutants, RLuc2 and 8, in a BRET(2) fusion protein increased the light output by a factor of ~10. Substitution of native RLuc with either of the RLuc mutants resulted in a decrease in BRET(2) ratio by a factor of ~2 when BRET(2) components were separated by the thrombin cleavage sequence. BRET(2) ratios changed by factors of 18.8±1.2 and 18.2±0.4 for GFP(2)-RG-RLuc2 and GFP(2)-RG-RLuc8 fusion proteins, respectively, on thrombin cleavage compared to 28.8±0.20 for GFP(2)-RG-RLuc. The detection limits for thrombin were 0.23 and 0.26 nM for RLuc2 and RLuc8 BRET(2) systems, respectively, and 15 pM for GFP(2)-RG-RLuc. However, overall, the mutant BRET systems remain more sensitive than FRET and brighter than standard BRET(2).  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) requires the sequential activities of virus-encoded proteins during replication. The activities of several host cell proteins and machineries are also critical to the completion of virus assembly and the release of infectious virus particles from cells. One of these proteins, the double-stranded RNA-binding protein Staufen1 (Stau1), selectively associates with the HIV-1 genomic RNA and the viral precursor Gag protein, pr55Gag. In this report, we tested whether Stau1 modulates pr55Gag assembly using a new and specific pr55Gag oligomerization assay based on bioluminescence resonance energy transfer (BRET) in both live cells and extracts after cell fractionation. Our results show that both the overexpression and knockdown of Stau1 increase the pr55Gag-pr55Gag BRET levels, suggesting a role for Stau1 in regulating pr55Gag oligomerization during assembly. This effect of Stau1 on pr55Gag oligomerization was observed only in membranes, a cellular compartment in which pr55Gag assembly primarily occurs. Consistently, expression of Stau1 harboring a vSrc myristylation signal led to a 6.5-fold enrichment of Stau1 in membranes and a corresponding enhancement in the Stau1-mediated effect on pr55Gag-pr55Gag BRET, demonstrating that Stau1 acts on assembly when targeted to membranes. A role for Stau1 in the formation of particles is further supported by the detection of membrane-associated detergent-resistant pr55Gag complexes and the increase of virus-like particle release when Stau1 expression levels are modulated. Our results indicate that Stau1 influences HIV-1 assembly by modulating pr55Gag-pr55Gag interactions, as shown in a live cell interaction assay. This likely occurs when Stau1 interacts with membrane-associated assembly intermediates.  相似文献   

8.
9.
In this study, the authors developed HEK293 cell lines that stably coexpressed optimal amounts of beta-arrestin2-Rluc and VENUS fusions of G protein-coupled receptors (GPCRs) belonging to both class A and class B receptors, which include receptors that interact transiently or stably with beta-arrestins. This allowed the use of a bioluminescence resonance energy transfer (BRET) 1- beta-arrestin2 translocation assay to quantify receptor activation or inhibition. One of the developed cell lines coexpressing CCR5-VENUS and beta-arrestin2- Renilla luciferase was then used for high-throughput screening (HTS) for antagonists of the chemokine receptor CCR5, the primary co-receptor for HIV. A total of 26,000 compounds were screened for inhibition of the agonist-promoted beta-arrestin2 recruitment to CCR5, and 12 compounds were found to specifically inhibit the agonist-induced beta-arrestin2 recruitment to CCR5. Three of the potential hits were further tested using other functional assays, and their abilities to inhibit CCR5 agonist-promoted signaling were confirmed. This is the 1st study describing a BRET1-beta-arrestin recruitment assay in stable mammalian cells and its successful application in HTS for GPCRs antagonists.  相似文献   

10.
11.
Bioluminescence resonance energy transfer (BRET) is a straightforward biophysical technique for studying protein-protein interactions. It requires: (1) that proteins of interest and suitable controls be labeled with either a donor or acceptor molecule, (2) placement of these labeled proteins in the desired environment for assessing their potential interaction, and (3) use of suitable detection instrumentation to monitor resultant energy transfer. There are now several possible applications, combinations of donor and acceptor molecules, potential assay environments and detection system perturbations. Therefore, this review aims to demystify and clarify the important aspects of the BRET methodology that should be considered when using this technique.  相似文献   

12.
We developed a cellular Bioluminescent Resonance Energy Transfer (BRET) assay based on the interaction of TrkB fused to Renilla luciferase with the intracellular adaptor protein Shc fused to Enhanced Yellow Fluorescent Protein (EYFP). The TrkB agonist Brain Derived Neurotrophic Factor (BDNF) induced a maximum BRET signal as of 10 min with an EC50 value of 1.4 nM, similar to the other endogenous agonists NT-3 and NT-4/5, 1.5 nM and 0.34 nM, respectively. Interestingly, measure of the BRET signal with increasing expression of Shc-EYFP, in the presence or absence of BDNF, suggested a conformational change of preformed TrkB/Shc complexes rather than Shc recruitment. Furthermore, the Y516F TrkB mutant deficient to bind Shc as well as the kinase-dead K572R TrkB mutant was unable to respond to BDNF and exhibited a lower basal BRET signal than that of the wild-type TrkB receptor, again suggesting a preformed complex with constitutive activity. The double YY706/707FF TrkB mutant in the kinase activation loop also showed reduced basal activity but surprisingly kept its capacity to enhance BDNF-induced interaction with Shc, though with less efficacy. The Trk selective kinase inhibitors K252a and BMS-9 blocked BDNF-induced BRET signal with similar potency (100–150 nM), the preferential c-Met inhibitor PF-2341006 being one order of magnitude less potent. Remarkably, in the absence of BDNF, K252a and BMS-9 also reduced basal activity to the level of the Y516F TrkB mutant, suggesting that these compounds were able to reduce the TrkB constitutive activity. BRET responses of mutants and to kinase inhibitors thus reveal a complex level of interaction between TrkB and Shc and suggest that this BRET assay could be of great utility to test blockers of TrkB signalling in a physiologically relevant context.  相似文献   

13.
Leukotrienes (LTs) are biologically active compounds derived from arachidonic acid which have important pathophysiological roles in asthma and inflammation. The cysteinyl leukotriene LTC(4) and its metabolites LTD(4) and LTE(4) stimulate bronchoconstriction, airway mucous formation and generalized edema formation. LTC(4) is formed by addition of glutathione to LTA(4), catalyzed by the integral membrane protein, LTC(4) synthase (LTCS). We now report the use of bioluminescence resonance energy transfer (BRET) to demonstrate that LTCS forms homo-oligomers in living cells. Fusion proteins of LTCS and Renilla luciferase (Rluc) and a variant of green fluorescent protein (GFP), respectively, were prepared. High BRET signals were recorded in transiently transfected human embryonic kidney (HEK 293) cells co-expressing Rluc/LTCS and GFP/LTCS. Homo-oligomer formation in living cells was verified by co-transfection of a plasmid expressing non-chimeric LTCS. This resulted in dose-dependent attenuation of the BRET signal. Additional evidence for oligomer formation was obtained in cell-free assays using glutathione S-transferase (GST) pull-down assay. To map interaction domains for oligomerization, GFP/LTCS fusion proteins were prepared with truncated variants of LTCS. The results obtained identified a C-terminal domain (amino acids 114-150) sufficient for oligomerization of LTCS. Another, centrally located, interaction domain appeared to exist between amino acids 57-88. The functional significance of LTCS homo-oligomer formation is currently being investigated.  相似文献   

14.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ''donor'' luciferase enzyme to an ''acceptor'' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.  相似文献   

15.
A substantial range of protein-protein interactions can be readily monitored in real time using bioluminescence resonance energy transfer (BRET). The procedure involves heterologous coexpression of fusion proteins, which link proteins of interest to a bioluminescent donor enzyme or acceptor fluorophore. Energy transfer between these proteins is then detected. This protocol encompasses BRET1, BRET2 and the recently described eBRET, including selection of the donor, acceptor and substrate combination, fusion construct generation and validation, cell culture, fluorescence and luminescence detection, BRET detection and data analysis. The protocol is particularly suited to studying protein-protein interactions in live cells (adherent or in suspension), but cell extracts and purified proteins can also be used. Furthermore, although the procedure is illustrated with references to mammalian cell culture conditions, this protocol can be readily used for bacterial or plant studies. Once fusion proteins are generated and validated, the procedure typically takes 48-72 h depending on cell culture requirements.  相似文献   

16.
Varicella zoster virus (VZV) ORF25 is a 156 amino acid protein belonging to the approximately 40 core proteins that are conserved throughout the Herpesviridae. By analogy to its functional orthologue UL33 in Herpes simplex virus 1 (HSV-1), ORF25 is thought to be a component of the terminase complex. To investigate how cleavage and encapsidation of viral DNA links to the nuclear egress of mature capsids in VZV, we tested 10 VZV proteins that are predicted to be involved in either of the two processes for protein interactions against each other using three independent protein-protein interaction (PPI) detection systems: the yeast-two-hybrid (Y2H) system, a luminescence based MBP pull-down interaction screening assay (LuMPIS), and a bioluminescence resonance energy transfer (BRET) assay. A set of 20 interactions was consistently detected by at least 2 methods and resulted in a dense interaction network between proteins associated in encapsidation and nuclear egress. The results indicate that the terminase complex in VZV consists of ORF25, ORF30, and ORF45/42 and support a model in which both processes are closely linked to each other. Consistent with its role as a central hub for protein interactions, ORF25 is shown to be essential for VZV replication.  相似文献   

17.
Ubiquitin has emerged as an important regulator of protein stability and function in organisms ranging from yeast to mammals. The ability to detect in situ changes in protein ubiquitination without perturbing the physiological environment of cells would be a major step forward in understanding the ubiquitination process and its consequences. Here, we describe a new method to study this dynamic post-translational modification in intact human embryonic kidney cells. Using bioluminescence resonance energy transfer (BRET), we measured the ubiquitination of beta-arrestin 2, a regulatory protein implicated in the modulation of G protein-coupled receptors. In addition to allowing the detection of basal and GPCR-regulated ubiquitination of beta-arrestin 2 in living cells, real-time BRET measurements permitted the recording of distinct ubiquitination kinetics that are dictated by the identity of the activated receptor. The ubiquitination BRET assay should prove to be a useful tool for studying the dynamic ubiquitination of proteins and for understanding which cellular functions are regulated by this post-translational event.  相似文献   

18.
Oligomerization of the G protein-coupled cholecystokinin (CCK) receptor has been demonstrated, but its molecular basis and functional importance are not clear. We now examine contributions of transmembrane (TM) segments to oligomerization of this receptor using a peptide competitive inhibition strategy. Oligomerization of CCK receptors tagged at the carboxyl terminus with Renilla luciferase or yellow fluorescent protein was quantified using bioluminescence resonance energy transfer (BRET). Synthetic peptides representing TM I, II, V, VI, and VII of the CCK receptor were utilized as competitors. Of these, only TM VI and VII peptides disrupted receptor BRET. Control studies established that the beta2-adrenergic receptor TM VI peptide that disrupts oligomerization of that receptor had no effect on CCK receptor BRET. Notably, disruption of CCK receptor oligomerization had no effect on agonist binding, biological activity, or receptor internalization. To gain insight into the face of TM VI contributing to oligomerization, we utilized analogous peptides with alanines in positions 315, 319, and 323 (interhelical face) or 317, 321, and 325 (external lipid-exposed face). The Ala317,321,325 peptide eliminated the disruptive effect on CCK receptor BRET, whereas the other mutant peptide behaved like wild-type TM VI. This suggests that the lipid-exposed face of the CCK receptor TM VI most contributes to oligomerization and supports external contact dimerization of helical bundles, rather than domain-swapped dimerization. Fluorescent CCK receptor mutants with residues 317, 321, and 325 replaced with alanines were also prepared and failed to yield significant resonance transfer signals using either BRET or a morphological FRET assay, further supporting this interpretation.  相似文献   

19.
20.
Development of a semi-quantitative assay to detect full-length CYP2C19 RNA   总被引:1,自引:0,他引:1  
Wang XY  Levy RH  Ho RJ 《BioTechniques》2000,29(2):364-70, 372-3
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号