首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
When arylsulfatase C, a microsomal membrane-bound enzyme, is assayed with its natural substrates, the 3-beta-hydroxysteroid sulfates, it is also known as steroid sulfatase. Whether arylsulfatase C and steroid sulfatase are identical enzymes or not, however, has long been disputed. We now report that two electrophoretic variants of arylsulfatase C occur in normal human fibroblasts: one has a single anodic band of activity, "s," and the other has an additional faster migrating band, "f". The two types, s and "f + s", occur in cells from either sex. When fibroblast strains with the f + s forms of arylsulfatase C were cloned, two types of primary clones were always obtained: s and f + s. A single f band was never seen. When these primary clones were subcloned, however, the arylsulfatase C phenotype remained unchanged: primary s clones gave rise to s subclones and f + s clones to f + s subclones only. Therefore, these forms were clonal in origin and demonstrated a novel inheritance pattern in human cultured cells. The appearance of increasing amounts of the f band was correlated with up to 4-fold increase of arylsulfatase C activity, whereas the steroid sulfatase activity remained constant, thus demonstrating that arylsulfatase C was not identical with steroid sulfatase activity. Polyclonal antibodies raised against the s form immunoprecipitated activities of the s form of arylsulfatase C and steroid sulfatase but not the f form of arylsulfatase C. Therefore, we conclude that only the s form of arylsulfatase C is immunologically related to steroid sulfatase so that arylsulfatase C per se is not necessarily identical with steroid sulfatase. In addition, a novel form of genetic heterogeneity of isozymes in human fibroblasts is demonstrated.  相似文献   

3.
A 2.2-kilobase cDNA clone for human arylsulfatase B (ASB) and several genomic clones were isolated and sequenced. The deduced amino acid sequence of 533 amino acids contains a 41-amino acid N-terminal signal peptide and a mature polypeptide of 492 amino acid residues. Overexpression of ASB in transfected baby hamster kidney (BHK) cells resulted in up to 68-fold higher ASB activity than in untransfected BHK cells. Pulse-chase labeling showed that ASB was synthesized and secreted as a 64-kDa precursor and processed to a 47-kDa mature form in BHK cells. The 47-kDa ASB form was located in dense lysosomes. Transport of ASB to the lysosomes was accomplished in a mannose 6-phosphate receptor-dependent manner. The ASB cDNA clone hybridizes to 4.8-, 2.5-, and 1.8-kilobase species of RNA from human fibroblasts. The same pattern was observed in RNA from fibroblasts of three Maroteaux-Lamy patients who were deficient in ASB activity, as well as in RNA from fibroblasts of three patients with multiple sulfatase deficiency, in which all known sulfatases were markedly diminished. Deduced amino acid sequences of human arylsulfatase A, human ASB, human steroid sulfatase, human glucosamine-6-sulfatase, and an arylsulfatase from sea urchin showed a substantial degree of similarity suggesting that they arose from a common ancestral gene and are members of an arylsulfatase gene family.  相似文献   

4.
Arylsulfatases are a group of enzymes that remove sulfate moieties from a diverse set of substrates including glycoproteins, steroids, and cerebrosides. We have isolated recombinant cDNA clones corresponding to an arylsulfatase (SpARS) message that encodes an abundant protein of pluteus larvae of the sea urchin Strongylocentrotus purpuratus. Although vertebrate arylsulfatases have broad tissue distributions, in situ hybridization with a probe for SpARS shows that the sea urchin message accumulates in the embryo only in the single cell type of aboral ectoderm and its precursors. The message is first detectable by RNase protection assays around hatching blastula stage and accumulates through pluteus larva stage. The open reading frame of cDNA clones is 1701 nt long and encodes a deduced protein with a predicted molecular mass of 61 kDa. Analysis of corresponding genomic DNA clones reveals that the pre-mRNA contains six exons. Consistent with the fact that arylsulfatase enzyme activity is extracellular, this polypeptide has a hydrophobic leader sequence and three potential glycosylation sites. Furthermore, hybridization in situ shows that in blastulae arylsulfatase message is preferentially concentrated around nuclei at the basal sides of cells. The S. purpuratus sequence is very similar to that recently reported for the same enzyme from Hemicentrotus pulcherrimus and 30% of the amino acid residues are also identical to those of both human arylsulfatase C (steroid sulfatase) and arylsulfatase A. Sequence relationships among these four mRNAs suggest that, assuming equal rates of evolution, the duplication separating the human genes occurred at about the time of separation of the echinoderm and vertebrate lineages.  相似文献   

5.
The region surrounding the steroid sulfatase (STS) locus on Xp22.3 is of particular interest since it represents a deletion hot spot, shares homology with the proximal long arm of the Y chromosome (Yq11.2), and contains genes for several well-described X-linked disorders. Here we describe yeast artificial chromosomes (YACs) covering 450 kb around the STS gene. Eight YAC clones were isolated from a human YAC library. Their STS exon content was determined and the overlap of the clones characterized. Two of the YAC clones were found to contain the entire STS gene. The most proximal and the most distal ends of the YAC contig were cloned but neither of them crossed the breakpoints in any of the previously described patients with entire STS gene deletions. This is consistent with deletions larger than 500 kb in all these patients. One of the YAC clones was found to contain sequences from the STS pseudogene on Yq11.2. Two anonymous DNA sequences, GMGXY19 and GMGXY3, previously mapped in the vicinity of the STS locus, were found within the YAC contig and their assignment with respect to the STS locus was thus possible. This contig is useful for the overlap cloning of the Xp22.3 region and for reverse genetic strategies for the isolation of disease genes in the region. Furthermore, it may provide insight into the molecular mechanisms of deletion and translocation events on Xp22.3 and in the evolution of sex chromosomes.  相似文献   

6.
Summary Two females showing partial expression of X-linked chondrodysplasia punctata were identified in a family. Bone dysplasia was caused by an aberrant X chromosome that had an inverse duplication of the segment Xp21.2–Xp22.2 and a deletion of Xp22.3-Xpter. To characterise the aberrant X chromosome, dosage blots were performed on genomic DNA from a carrier using a number of X-linked probes. Anonymous sequences from Xp21.2–Xp22.2 to which probes D2, 99.61, C7, pERT87-15, and 754 bind were duplicated on the aberrant X chromosome. The proposita was heterozygous for all these markers. Dosage blots also showed that the loci for steroid sulfatase and the cell surface antigen 12E7 (MIC2) were deleted as expected from the cytogenetic results. Mouse human cell hybrids were constructed that retained the normal X in the active state. Analysis of these hybrid clones for the markers from Xp21.2–Xp22.2 revealed that all the alleles of the informative markers, present in a single dosage in the genomic DNA, were carried on the normal X chromosome of the proposita. The duplicated X chromosome therefore had two identical alleles, indicating that the aberration resulted from an intrachromosomal rearrangement.  相似文献   

7.
Cloning and expression of human arylsulfatase A   总被引:25,自引:0,他引:25  
A full length cDNA for human arylsulfatase A was cloned and sequenced. The predicted amino acid sequence comprises 507 residues. A putative signal peptide of 18 residues is followed by the NH2-terminal sequence of placental arylsulfatase A. One of the arylsulfatase A peptides ends 3 residues ahead of the predicted COOH terminus. This indicates that proteolytic processing of arylsulfatase A is confined to the cleavage of the signal peptide. The predicted sequence contains three potential N-glycosylation sites, two of which are likely to be utilized. The sequence shows no homology to any of the known sequences of lysosomal enzymes but a 35% identity to human steroid sulfatase. Transfection of monkey and baby hamster kidney cells resulted in an up to 200-fold increase of the arylsulfatase A activity. The arylsulfatase A was located in lysosome-like structures and transported to dense lysosomes in a mannose 6-phosphate receptor-dependent manner. The arylsulfatase A cDNA hybridizes to 2.0- and 3.9-kilobase species in RNA from human fibroblasts and human liver. RNA species of similar size were detected in metachromatic leukodystrophy fibroblasts of two patients, in which synthesis of arylsulfatase A polypeptides was either detectable or absent.  相似文献   

8.
We cloned and sequenced a full-length cDNA of human placental N-acetylgalactosamine-6-sulfate sulfatase, the enzyme deficient in Morquio disease. The 2339-nucleotide sequence contained 1566 nucleotides which encoded a polypeptide of 522 amino acid residues. The deduced amino acid sequence was composed of a 26-amino acid N-terminal signal peptide and a mature polypeptide of 496 amino acid residues including two potential asparagine-linked glycosylation sites. Expression of the cDNA in transfected deficient fibroblasts resulted in higher production of this sulfatase activity than in untransfected deficient fibroblasts. The cDNA clone was hybridized to only a 2.3-kilobase species of RNA in human fibroblasts. The amino acid sequence of N-acetylgalactosamine-6-sulfate sulfatase showed a high degree of homology with those of other sulfatases such as human arylsulfatases A, B or C, glucosamine-6-sulfatase, iduronate-2-sulfatase and sea urchin arylsulfatase.  相似文献   

9.
Zhai L  Mu J  Zong H  DePaoli-Roach AA  Roach PJ 《Gene》2000,242(1-2):229-235
Glycogenin-2 is one of two self-glucosylating proteins involved in the initiation phase of the synthesis of the storage polysaccharide glycogen. Cloning of the human glycogenin-2 gene, GYG2, has revealed the presence of 11 exons and a gene of more than 46 kb in size. The structure of the gene explains much of the observed diversity in glycogenin-2 cDNA sequences as being due to alternate exon usage. In some cases, there is variation in the splice junctions used. Over regions of protein sequence similarity, the GYG2 gene structure is similar to that of the other glycogenin gene, GYG. A genomic GYG2 clone was used to localize the gene to Xp22.3 by fluorescence in-situ hybridization. Localization close to the telomere of the short arm of the X chromosome is consistent with mapping information obtained from glycogenin-2 STS sequences. Glycogenin-2 maps between the microsatellite anchor markers AFM319te9 (DXS7100) and AFM205tf2 (DXS1060), and its 3' end is 34.5 kb from the 3' end of the arylsulphatase gene ARSD. GYG2 is outside the pseudoautosomal region PAR1 but still in a region of X-Y shared genes. As is true for several other genes in this location, an inactive remnant of GYG2, consisting of exons 1-3, may be present on the Y chromosome.  相似文献   

10.
Reciprocal probing has been used to identify a cDNA clone (xh8H11) representing a gene preferentially expressed in striated muscle. The gene maps close to DXS7101 31.9 cM from the short arm telomere of the X-chromosome at Xp22.1. On searching expressed and genomic databases, 21 expressed sequence tags were found that allowed the assignment of a human extended consensus sequence of 887 bp, suggesting a completely expressed gene symbolized as SMPX. By using the human consensus sequence, the orthologous mouse Smpx and rat SMPX genes could be aligned and confirmed by complete sequencing of additional SMPX-related clones obtained by library screening. An open reading frame was identified encoding a peptide of 88-86 and 85 amino acids in human and rodents, respectively. The predicted peptide had no significant homologies to known structural elements. The human consensus cDNA sequence was used to define the genomic structure of the human SMPX that had been missed by a previous large scale sequencing approach. The gene consists of five exons (> or =172, 57, 84, 148, > or =422 bp) and four introns (3639, 10410, 6052, 31134 bp) comprising together 52.1 kb and is preferentially and abundantly expressed in heart and skeletal muscle. Thus, a novel human gene encoding a small muscular protein that maps to Xp22.1 (SMPX) has been identified and structurally characterized as a basis for further functional analysis.  相似文献   

11.
The cDNA of the two isoforms of bovine cGMP-dependent protein kinase   总被引:9,自引:0,他引:9  
W Wernet  V Flockerzi  F Hofmann 《FEBS letters》1989,251(1-2):191-196
cDNAs encoding the isoform I alpha of the cGMP-dependent protein kinase were isolated from a bovine trachea smooth muscle cDNA library constructed in lambda gt10. The deduced protein sequence is identical with the protein sequence obtained by Edman degradation of the bovine lung enzyme [(1984) Biochemistry 23, 4207-4218]. Alternate cDNA clones were isolated which code for a protein slightly different within the aminoterminal part from the known amino acid sequence. These alternate cDNAs contain the sequence of a peptide identified in the isoform I beta of cGMP-dependent protein kinase. Northern blot analysis of poly(A)+ RNA from bovine trachea smooth muscle indicated the presence of two different mRNA species of about 6.2 kb.  相似文献   

12.
J M Derry  P J Barnard 《Genomics》1991,10(3):593-597
We have mapped the gene for the alpha 2-subunit of the inhibitory glycine receptor (Glra2) to the telomeric end of the mouse X chromosome by backcross analysis of a Mus musculus/Mus spretus interspecific cross. In addition, we have extended the mapping of the GABAA alpha 3-subunit receptor gene (Gabra3). A deduced gene order of cen-Cybb-Hprt-DXPas6-Gabra3-Rsvp-Gdx/Cf-8- Dmd-Pgk-1-DXPas2-Plp-DXPas1-Glra2-tel places Gabra3 proximal to the visual pigment gene Rsvp and Glra2 in the region of loci for hypophosphatemia (Hyp), steroid sulfatase (Sts), and the E1 alpha-subunit of pyruvate dehydrogenase (Pdha1). This establishes the XF region of the mouse X chromosome as homologous with the Xp22.1-p22.3 region of the human X chromosome and indicates the presence of an evolutionary breakpoint in the region of Xp21.3.  相似文献   

13.
A full-length cDNA clone encoding an isoform of human CTP synthetase (type II) was isolated. A 1761-nucleotide open reading frame which corresponds to a protein of 586 amino acids with a predicted molecular mass of 65678 Da was identified. The predicted protein sequence showed 74% identity with the translation product of a previously identified human CTP synthetase cDNA clone (type I). The function of the human cDNA encoding type II CTP synthetase was verified by successful complementation of the cytidine-requiring CTP synthetase deficient mutant JF618 of Escherichia coli. The gene encoding type II CTP synthetase has been localized on chromosome Xp22.  相似文献   

14.
Several human diseases have been mapped to Xp22.3 on the distal short arm of the human X chromosome, and many genes in this area have been found to be expressed from the inactive X chromosome. To facilitate physical mapping and characterization of this interesting region, we have constructed a battery of radiation hybrids containing human X chromosomal fragments, and isolated two hybrid clones with overlapping fragments of Xp22.3. Alu-PCR on these hybrids and identification of sequences common to both hybrids allowed the isolation of six sequence-tagged sites (STSs) from Xp22.3. Five of the STSs were mapped to individual YACs comprising a recently constructed contig of this region. These novel STSs are useful markers for further physical characterization of this part of the genome. Received: 4 May 1995 / Revised: 27 September 1995  相似文献   

15.
16.
Complementation of multiple sulfatase deficiency in somatic cell hybrids   总被引:1,自引:0,他引:1  
Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.  相似文献   

17.
18.
Three cDNA clones (GmHSP23.9, GmHSP22.3, and GmHSP22.5) representing three different members of the low-molecular-weight (LMW) heat shock protein (HSP) gene superfamily were isolated and characterized. A fourth cDNA clone, pFS2033, was partially characterized previously as a full-length genomic clone GmHSP22.0. The deduced amino acid sequences of all four cDNA clones have the conserved carboxyl-terminal LMW HSP domain. Sequence and hydropathy analyses of GmHSP22, GmHSP22.3, and GmHSP22.5, representing HSPs in the 20 to 24 kDa range, indicate they contain amino-terminal signal peptides. The mRNAs from GmHSP22, GmHSP22.3, and GmHSP22.5 were preferentially associated in vivo with endoplasmic reticulum (ER)-bound polysomes. GmHSP22 and GmHSP22.5 encode strikingly similar proteins; they are 78% identical and 90% conserved at the amino acid sequence level, and both possess the C-terminal tetrapeptide KQEL which is similar to the consensus ER retention motif KDEL; the encoded polypeptides can be clearly resolved from each other by two-dimensional gel analysis of their hybrid-arrest translation products. GmHSP22.3 is less closely related to GmHSP22 (48% identical and 70% conserved) and GmHSP22.5 (47% identical and 65% conserved). The fourth cDNA clone, GmHSP23.9, encodes a HSP of ca. 24kDa with an amino terminus that has characteristics of some mitochondrial transit sequences, and in contrast to GmHSP22, GmHSP22.3, and GmHSP22.5, the corresponding mRNA is preferentially associated in vivo with free polysomes. It is proposed that the LMW HSP gene superfamily be expanded to at least six classes to include a mitochondrial class and an additional endomembrane class of LMW HSPs.  相似文献   

19.
Cartilage matrix protein (CMP) is a major component of the extracellular matrix of nonarticular cartilage. The structure and chromosomal location of the human gene encoding CMP was determined by molecular cloning analysis. We used a partial chicken CMP cDNA probe to isolate three overlapping human genomic clones. From one of these clones, a probe containing 2 human CMP exons was isolated and used to map the gene to chromosome 1p35 and to screen a human retina cDNA library. Two overlapping cDNA clones were isolated. The predicted protein sequence of 496 amino acids includes a 22-residue signal peptide and a 474-residue mature protein of Mr 51,344. The human CMP gene and polypeptide are strikingly similar to the chicken CMP gene and polypeptide. Human CMP is 79% identical to chicken CMP and contains two homologous domains separated by an epidermal growth factor-like domain. One potential N-glycosylation site is conserved between the two species. The human CMP gene spans 12 kilobase pairs with 8 exons and 7 introns which are similar in size to those of the chicken CMP gene. Both RNA splice junctions of intron G in the human and chicken CMP genes are nonconforming to the consensus splice sequences. This suggests that the CMP gene utilizes a new RNA splicing mechanism.  相似文献   

20.
X-linked chondrodysplasia punctata (CDPX) is a congenital disorder characterized by abnormalities in cartilage and bone development. Mutations leading to amino acid substitutions were identified recently in CDPX patients, in the coding region of the arylsulfatase E (ARSE) gene, a novel member of the sulfatase gene family. Transfection of the ARSE full-length cDNA, in Cos7 cells, allowed us to establish that its protein product is a 60-kD precursor, which is subject to N-glycosylation, to give a mature 68-kD form that, unique among sulfatases, is localized to the Golgi apparatus. Five missense mutations found in CDPX patients were introduced into wild-type ARSE cDNA by site-directed mutagenesis. These mutants were transfected into Cos7 cells, and the arylsulfatase activity and biochemical properties were determined, to study the effect of these substitutions on the ARSE protein. One of the mutants behaves as the wild-type protein. All four of the other mutations resulted in a complete lack of arylsulfatase activity, although the substitutions do not appear to affect the stability and subcellular localization of the protein. The loss of activity due to these mutations confirms their involvement in the clinical phenotype and points to the importance of these residues in the correct folding of a catalytically active ARSE enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号