首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Plasmalemma-rich microsomal vesicles were prepared from whole leaf and acid-washed epidermal tissue of Vicia faba L. cv. Osnabrücker Markt by aqueous two-phase partitioning in dextran T-500 and polyethylenglycol 1350 aqueous phases. These vesicles were tightly sealed and predominantly right-side out, and contained a K+ -stimulated, mg2+-dependent and vanadate-sensitive ATPase. The enzyme from both tissues exhibited nearly identical properties: pH optimum 6.4, Km for ATP 0.60 mM(whole leaf) and 0.67 mM (epidermis). Vmax -480 nmol (mg protein)1 min1 (whole leaf) and 510 nmol (mg protein)1 min1 (epidermis), I50 (Na3,VO4) 7.5 μM (whole leaf) and 15 μM (epidermis). The enzyme was not inhibited by NO3(50 mM)or sodium azide (I mM). DCCD (20 μM) reduced enzyme activity to 50% (whole leaf) and 58% (epidermis), gramicidin S (20 μM) to 36% (whole leaf) and 41%(epidermis). Ca2+ inhibited the ATPase [I50, C2+: 0.5 mM(whole leaf) and 0.8 mM(epidermis)]. Ca2+ inhibited the ATPase [I50, C2+ 0.5 mM(whole leaf) und 0.8 (epidermis)]. The vanadate-sensitive ATPase from whole leaf and epidermal tissue was slightly but significantly stimulated by fusicoccin (FC) at a concentration (0.13 μM) promoting stomatal opening. The stimulation was not seen in the solubilized ATPase. Stomata of the cultivar used here were insensitive lo (±)ABA up to 2 μM level which is effective in most other cultivars and species. Likewise, at this concentration no effect of ABA on the activity of the epidermal ATPase was observed. The data are discussed with respect to the interaction of FC and ABA with the ATPase.  相似文献   

2.
The mechanism of thyroid hormone-induced and glucocorticoid-modulated death of tail epidermal cells from tadpoles of bullfrog, Rana catesbeiana, was investigated by comparing tail epidermal cells with dorsal body epidermal cells. From morphological and biochemical criteria, there were two types of epidermal cells: basal cells and skein cells. The abundance of these cells was different between the tail and the body skin. Fifty percent of body cells and more than 95% of tail cells were skein cells. Effects of 3,3',5-triiodo-L-thyronine (T3, 10(-8) M) and cortisol (5 X 10(-7) M) were investigated with cultured epidermal cells. T3 differently regulated the keratinization of the tail and body cells. The keratinization of the tail epidermal cells was not observed without T3. T3 induced the keratinization dramatically. On the other hand, body epidermal cells were constantly undergoing keratinization without the hormone: T3 merely accelerated the rate of keratinization. Cortisol generally did not show any significant effect on keratinization. T3 showed opposite effects on DNA synthesis of the tail and body cells: suppression of tail cells and stimulation of body cells. Cortisol weakened the inhibitory effect of T3 on DNA synthesis in tail cells. Immunofluorescent micrographs with anti-BrdU showed that T3 decreased the number of cells in the S phase of the cell cycle in the case of tail cells but not of body cells. Thus, thyroid hormone plays dual roles for the tadpole epidermal cells: one is an induction and a promotion of keratinization in tail and body cells, respectively, and the other is an opposite regulation for the proliferation of both epidermal cells. These roles seem to have crucial connections to a tail-specific cell death induced by thyroid hormone.  相似文献   

3.
The mechanisms by which different concentrations of cesium modify membrane potentials and currents were investigated in guinea pig single ventricular myocytes. In a dose-dependent manner, cesium reversibly decreases the resting potential and action potential amplitude and duration, and induces a diastolic decaying voltage tail (Vex), which increases at more negative and reverses at less negative potentials. In voltage-clamped myocytes, Cs+ increases the holding current, increases the outward current at plateau levels while decreasing it at potentials closer to resting potential, induces an inward tail current (Iex) on return to resting potential and causes a negative shift of the threshold for the inward current. During depolarizing ramps, Cs+ decreases the outward current negative to inward rectification range, whereas it increases the current past that range. During repolarizing ramps, Cs+ shifts the threshold for removal of inward rectification negative slope to less negative values. Cs+-induced voltage and current tails are increased by repetitive activity, caffeine (5 mM) and high [Ca2+]o (8.1 mM), and are reduced by low Ca2+ (0.45 mM), Cd2+ (0.2 mM) and Ni2+ (2 mM). Ni2+ also abolishes the tail current that follows steps more positive than ECa. We conclude that Cs+ (1) decreases the resting potential by decreasing the outward current at more negative potentials, (2) shortens the action potential by increasing the outward current at potentials positive to the negative slope of inward rectification, and (3) induces diastolic tails through a Ca2+-dependent mechanism, which apparently is an enhanced electrogenic Na-Ca exchange.  相似文献   

4.
Summary Normal human breast epithelial cells obtained from a reduction mammoplasty (S130) have been maintained in culture for up to a year in Ham's F12:Dulbecco's medium, with 5% equine serum and a low calcium concentration (0.04 mM). These cells undergo senescence and terminal differentiation if they are switched to high Ca2+ medium (1.05 mM). To clarify the mechanism by which Ca2+ regulates the growth of these cells, we studied the role of tubulin assembly-disassembly and the morphologic changes subsequent to high Ca2+ switch. An early Passage (9) of S130 breast epithelial cells growing in low Ca2+ medium was analyzed. Of a total of 785 counted cells, 720 (92%) were rounded and 65 (8%) were flat, elongated, and fibroblastlike. When the cells were switched to high Ca2+ medium, out of 553 cells, only 111 (20%) were rounded and the remaining 442 (80%) were elongated and fibroblastlike. Immunocytochemical localization of tubulin, using the immunogold silver enhancement technique, showed that the majority of low Ca2+-grown cells did not display a network of tubulin fibers, whereas high Ca2+-grown cells revealed extensive cytoplasmic network of polymerized tubulin, which seemed to stretch out the cells. Experiments designed to determine the mechanisms of tubulin polymerization in these cells revealed that: a) Cells grown in high Ca2+ medium containing 0.1 mM colchicine had a reduced proportion of elongated cells; b) treatement of the cells with the calcium ionophore A23187 in low calcium medium resulted in an increase in the number of elongated cells which had more polymerized tubulin; and d) treatment of the cells with cyclic-AMP in low Ca2+ medium had no observable effect on cell morphology. These results indicate that high levels of Ca2+ either favor tubulin polymerization or stabilize the polymerized state. This research was supported by NCI grant CA-38921 from the National Cancer Institute, Bethesda, MD, and by an institutional grant from the United Foundation of Greater Detroit.  相似文献   

5.
Summary The growth of WI-38 cells in serum-free growth medium with and without hormone supplementation in the presence of elevated Ca2+ concentrations was investigated. At 5 mM CaCl2, WI-38 cells seeded at low density without serum or hormone supplementation showed up to a 12-fold increased in cell number at saturation density over that obtained at day 1. Saturation densities were comparable when either 5 mM CaCl2 or epidermal growth factor (1 mM CaCl2) was used in the presence of insulin, dexamethasone and transferrin. Combining suboptimal doses of epidermal growth factor and CaCl2 resulted in an additive effect on saturation density. Thus, nornal human diploid cells are capable of substantial growth in serum-free, hormone-free growth medium. In contrast, confluent cultures refed with the same medium are not responsive to elevated Ca2+ concentrations. In fact, elevated Ca2+ concentrations inhibited the proliferative response of confluent cultures to epidermal growth factor, but enhanced their response to the combined treatment of insulin, transferrin and dexamethasone. This work was supported by the United States Public Health Society grants T-32, CA09171 and AG-00378. Editor's Statement This paper rigorously dissects the interplay among external Ca2+ concentration, cell density and specific growth factors on fibroblast growth in defined medium. Wallace L. McKeehan  相似文献   

6.
Calcium Homeostasis in Digitonin-Permeabilized Bovine Chromaffin Cells   总被引:6,自引:6,他引:0  
The regulation of cytosolic calcium was studied in digitonin-permeabilized chromaffin cells. Accumulation of 45Ca2+ by permeabilized cells was measured at various Ca2+ concentrations in the incubation solutions. In the absence of ATP, there was a small (10–15% of total uptake) but significant increase in accumulation of Ca2+ into both the vesicular and nonvesicular pools. In the presence of ATP, the permeabilized cells accumulated Ca2+ into carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-sensitive and -insensitive pools. The CCCP-sensitive pool—mainly mitochondria—was active when the calcium concentration was > 1 μM and was not saturated at 25 μM. The Ca2+ sequestered by the CCCP-insensitive pool could be inhibited by vanadate and released by inositol trisphosphate, a combination suggesting that this pool was the endoplasmic reticulum. The CCCP-insensitive pool had a high affinity for calcium, with an EC50 of ~1 μM. When the Ca2+ concentration was adjusted to the level in the cytoplasm of resting cells (0.1 μM), the presumed endoplasmic reticulum pool was responsible for ~90% of the ATP-stimulated calcium uptake. At a calcium level similar to the acetylcholine-stimulated level in intact cells (5–10 μM), most of the Ca2+ (>95%) went into the CCCP-sensitive pool.  相似文献   

7.
The importance of extracellular calcium in epidermal differentiation and intra-epidermal cohesion has been recognized for many years. Darier disease (DD) was the first genetic skin disease caused by abnormal epidermal calcium homeostasis to be identified. DD is characterized by loss of cell-to-cell adhesion and abnormal keratinization. DD is caused by genetic defects in ATP2A2 encoding the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2). SERCA2 is a calcium pump of the endoplasmic reticulum (ER) transporting Ca2+ from the cytosol to the lumen of ER. ATP2A2 mutations lead to loss of Ca2+ transport by SERCA2 resulting in decreased ER Ca2+ concentration in Darier keratinocytes. Here, we review the role of SERCA2 pumps and calcium in normal epidermis, and we discuss the consequences of ATP2A2 mutations on Ca2+ signaling in DD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

8.
Summary Experiments were performed to test whether or not high concentrations of CaCl2 (100 mM) are able to arrest and stabilize internal structures and associated functions in Euglena gracilis Z cells stored in darkness at 4° C. Storage of photoheterotrophically grown green cells in high Ca2+ media (2–100 mM) retards pheophytinization of the chlorophylls, preserves photosynthetic activities and stabilizes the structural organization of the associated light-harvesting complexes of the photosystem II units. Alterations of photosynthesis and respiration by chlorpromazine or by temperature are strongly reduced in cells stored under such conditions. More precisely, a chlorpromazine inhibition site is evidenced in the mitochondrial electron pathway and its location in the chloroplastic electron pathway is clarified. Adaptation of Euglena cells from 2 mM to 100 mM Ca2+ medium is accompanied by an increase both in the externally bound and total internal calcium concentration. A mechanism involving a Ca2+ deposit on internal membranes is proposed. Such interpretation is extended to the storage of cells immobilized in Ca2+-alginate gel.Nomenclature (Ca2+)ex external calcium concentration - Chl chlorophylls - (Cl)ex external chloride concentration - CPZ chlorpromazine or 2-chloro-10-(3-dimethylaminopropyl)-phenothiazine - DCMU diuron or (3,4-dichorophenyl)-1,1-dimethylurea - EGTA ethylene glycol-bis(-aminoethylether) N,N,N ,N-tetraacetic acid - Fc initial level of chlorophyll fluorescence with DCMU - Fmax maximal level of chlorophyll fluorescence with DCMU - Fo level of chlorophyll fluorescence after transients - Ft level of chlorophyll fluorescence with DCMU - Pheo pheophytins - PS I and PS II photosystems I and II - SMi storage medium Offprint requests to: C. Tamponnet  相似文献   

9.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt.  相似文献   

10.
Abstract: Glial cells in primary mixed cultures or purified astrocyte cultures from mouse cortex respond to reduced extracellular calcium concentration ([Ca2+]e) with increases in intracellular calcium concentration ([Ca2+]i) that include single-cell Ca2+ oscillations and propagated intercellular Ca2+ waves. The rate and pattern of propagation of low [Ca2+]e-induced intercellular Ca2+ waves are altered by rapid perfusion of the extracellular medium, suggesting the involvement of an extracellular messenger in Ca2+ wave propagation. The low [Ca2+]e-induced Ca2+ response is abolished by thapsigargin and by the phospholipase antagonist U73122. The low [Ca2+]e-induced response is also blocked by replacement of extracellular Ca2+ with Ba2+, Zn2+, or Ni2+, and by 100 µM La3+. Glial cells in lowered [Ca2+]e(0.1–0.5 mM) show an increased [Ca2+]i response to bath application of ATP, whereas glial cells in increased [Ca2+]e (10–15 mM) show a decreased [Ca2+]i response to ATP. These results show that glial cells possess a mechanism for coupling between [Ca2+]e and the release of Ca2+ from intracellular stores. This mechanism may be involved in glial responses to the extracellular environment and may be important in pathological conditions associated with low extracellular Ca2+ such as seizures or ischemia.  相似文献   

11.
Cell proliferation was examined in the back and tail epidermis of larval Xenopus laevis using bromodeoxyuridine (BrdU). The BrdU labeling index of the back epidermis increased temporally at stage 59, followed by a rapid decrease to the same level as at stage 51. The temporal increase in cell proliferation of the back epidermis produced a new epidermal layer composed of basal cells. In vitro analysis showed that tri-iodothyronine (T3) promotes cell proliferation of basal cells but suppresses that of skein cells. Immunohistochemical studies showed that the newly formed basal cell layer functions as adult precursor cells which produce the adult epidermal cells. In contrast to the back epidermis, the labeling index of the tail epidermis decreased from stage 57. However, when the tail skin was transplanted to the back area, cell proliferation in the tail epidermis increased to the same level as that of the normal back epidermis. Cell proliferation of the back epidermis was not suppressed by transplanting the skin to the tail area. These results suggest that some promoting factors are produced in the body region and regulate the number of adult precursor cells, which determine the developmental fate of the larval skin.  相似文献   

12.
Abstract: We used cultured rat chromaffin cells to test the hypothesis that Ca2+ entry but not release from internal stores is utilized for exocytosis. Two protocols were used to identify internal versus external Ca2+ sources: (a) Ca2+ surrounding single cells was transiently displaced by applying agonist with or without Ca2+ from an ejection pipette. (b) Intracellular stores of Ca2+ were depleted by soaking cells in Ca2+-free plus 1 mM EGTA solution before transient exposure to agonist plus Ca2+. Exocytosis from individual cells was measured by microelectrochemical detection, and the intracellular Ca2+ concentration ([Ca2+]i) was measured by indo-1 fluorescence. KCl (35 mM) and nicotine (10 µM) caused an immediate increase in [Ca2+]i and secretion in cells with or without internal Ca2+ stores, but only when applied with Ca2+ in the ejection pipette. Caffeine (10 mM) and muscarine (30 µM) evoked exocytosis whether or not Ca2+ was included in the pipette, but neither produced responses in cells depleted of internal Ca2+ stores. Pretreatment with ryanodine (0.1 µM) inhibited caffeine- but not muscarine-stimulated responses. Elevated [Ca2+]i and exocytosis exhibited long latency to onset after stimulation by caffeine (2.9 ± 0.38 s) or muscarine (2.2 ± 0.25 s). However, the duration of caffeine-evoked exocytosis (7.1 ± 0.8 s) was significantly shorter than that evoked by muscarine (33.1 ± 3.5 s). The duration of caffeine-evoked exocytosis was not affected by changing the application period between 0.5 and 30 s. An ~20-s refractory period was found between repeated caffeine-evoked exocytotic bursts even though [Ca2+]i continued to be elevated. However, muscarine or nicotine could evoke exocytosis during the caffeine refractory period. We conclude that muscarine and caffeine mobilize different internal Ca2+ stores and that both are coupled to exocytosis in rat chromaffin cells. The nicotinic component of acetylcholine action depends primarily on influx of external Ca2+. These results and conclusions are consistent with our original observations in the perfused adrenal gland.  相似文献   

13.
Changes in the intracellular Ca2+ concentration ([Ca2+]i) induced by depolarization have been measured in glial cells acutely isolated from antennal lobes of the moth Manduca sexta at different postembryonic developmental stages. Depolarization of the glial cell membrane was elicited by increasing the external K+ concentration from 4 to 25 mM. At midstage 5 and earlier stages, less than 20% of the cells responded to 25 mM K+ (1 min) with a transient increase in [Ca2+]i of approximately 40 nM. One day later, at late stage 5, 68% of the cells responded to 25 mM K+, the amplitude of the [Ca2+]i transients averaging 592 nM. At later stages, all cells responded to 25 mM K+ with [Ca2+]i transients with amplitudes not significantly different from those at late stage 5. In stage 6 glial cells isolated from deafferented antennal lobes, i.e., from antennal lobes chronically deprived of olfactory receptor axons, only 30% of the cells responded with [Ca2+]i transients. The amplitudes of these [Ca2+]i transients averaged 93 nM and were significantly smaller than those in normal stage 6 glial cells. [Ca2+]i transients were greatly reduced in Ca2+‐free, EGTA‐buffered saline, and in the presence of the Ca2+ channel blockers cadmium and verapamil. The results suggest that depolarization of the cell membrane induces Ca2+ influx through voltage‐activated Ca2+ channels into antennal lobe glial cells. The development of the depolarization‐induced Ca2+ transients is rapid between midstage 5 and stage 6, and depends on the presence of afferent axons from the olfactory receptor cells in the antenna. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 85–98, 2002  相似文献   

14.
Summary Homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell's ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. Because of the importance of these ions to cellular functions, we investigated the effects of changes of [Ca++]i and pHi on each other in primary cultures of rabbit corneal epithelial cells. Digitized fluorescence imaging was used to measure [Ca++]i with fura-2 and pHi with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Resting pHi in these cells was 7.37±0.05 (n=20 cells) and resting [Ca++]i was 129±10 nM (n=35 cells) using a nominally bicarbonate-free Krebs Ringer HEPES buffer (KRHB), pH 7.4. On exposure to 20 mM NH4Cl, which rapidly alkalinized cells by 0.45 pH units, an increase in [Ca++]i to 215±14 nM occurred. Pretreatment of the cells with 100 μM verapamil or exposure to 1 mM ethylene bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) without extracellular calcium before addition of 20 mM NH4Cl did not abolish the calcium increase, suggesting that the source of the calcium transient was from intracellular calcium stores. On removal of NH4Cl or addition of 20 mM sodium lactate, there were minimal changes in calcium even though pHi decreased. Treatment of CE cells with the calcium ionophores, ionomycin and 4-bromo A23187, increased [Ca++]i, but produced a biphasic change in pHi. Initially, there was an acidification of the cytosol, and then an alkalinization of 0.10 to 0.11 pH units above initial values. When [Ca++]i was decreased by treating the cells with 5 mM EGTA and 20 μM ionomycin, pHi decreased by 0.35±0.02 units. We conclude that an increase in pHi leads to an increase in [Ca++]i in rabbit corneal epithelial cells; however, a decrease in pHi leads to minor changes in [Ca++]i. The ability of CE cells to maintain proper calcium homeostasis when pHi is decreased may represent an adaptive mechanism to maintain physiological calcium levels during periods of acidification, which occur during prolonged eye closure.  相似文献   

15.
Polyclonal antibodies were raised against Xenopus larva-specific 58 kDa keratin (PAK58) and adult-specific 63 kDa keratin (PAK63), in order to examine the origin of 63 kDa-keratin-producing cells in the tail skin. By immunofluorescent staining of the tail skin, the 58 kDa keratin was recognized in almost all of the larval epidermal cells, although a small number of PAK58-negative cells were detected at stage 64. In contrast, 63 kDa keratin was immunohistochemically recognized at stage 58, but the signal was very weak. The number of epidermal layers in the tail epidermis increased during a period from stage 58 to stage 64. At stage 64, a small number of PAK63-positive cells was clearly identified in the multilayered tail epidermis. Comparative analysis of successive sections showed that PAK63-positive cells are derived from a cell group differing from PAK58-positive cells. Immunohistochemical studies using cultured epidermal cells demonstrated that 58 kDa keratin is localized in the cytoskeletal bundles of skein cells, whereas 63 kDa keratin is produced not by skein cells but by basal cells and their descendants. These results suggest that basal cells are the adult precursor cells within the larval epidermis even in the tail area.  相似文献   

16.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

17.
The present study was designed to investigate whether calcium ionophore-induced activation and apoptosis are associated with the generation of hydrogen peroxide (H2O2) in rat eggs cultured in vitro. Culture of metaphase-II (M-II) arrested eggs in Ca2+/Mg2+-deficient medium did not induce egg activation, while a second polar body was observed in 20% of eggs when cultured in Ca2+/Mg2+-supplemented medium. In Ca2+/Mg2+-deficient medium, lower concentrations of calcium ionophore (0.2,0.4 and 0.8 µm) not only induced egg activation in a dose-dependent manner but also generation of intracellular H2O2 (84.40±0.50 ng/egg) when compared to control eggs (80.46±1.34 ng/egg). The higher concentration of calcium ionophore (1.6 µm) induced apoptosis and pronounced generation of intracellular H2O2 (92.43±0.93 ng/egg) in treated eggs. Conversely, cell-permeant antioxidant such as 2(3)-tert-butyl-4-hydroxyanisole (BHA) reduced intracellular H2O2 level (81.20±1.42 ng/egg) and protected against calcium ionophore-induced morphological changes characteristics of egg activation and apoptosis. These results clearly suggest that calcium ionophore-induced activation and apoptosis are associated with the generation of intracellular H2O2 in rat eggs.  相似文献   

18.
It is well known that calcium ions (Ca2+) induce keratinocyte differentiation. Ca2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca2+ gradient.  相似文献   

19.
Abstract: The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-d -glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 µM Co2+/Cd2+ or by 1 µMω-conotoxin MVIIC/1 µMω-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 µM mCPBG was substantially reduced by 10 µM Co2+/Cd2+ and was completely blocked by 1 µM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

20.
In EGFR-T17 cells, which express high levels of the epidermal growth factor (EGF) receptor, addition of a saturating dose of EGF (10 nM) leads to an increase in Ins(1,4,5)P3/diacylglycerol and also to cytosolic calcium [Ca2+]i due to both intracellular redistribution and influx from extracellular medium. Pretreatment of cells with cis -unsaturated nonesterified fatty acids such as oleic acid (1 to 100 μM) inhibited EGF-stimulated Ins(1,4,5)P3 generation and Ca2+ release from intracellular stores. Furthermore, such a treatment completely suppress Ca2+ influx in a dose-dependent manner. At doses capable of suppressing such early signals, oleic acid did not alter the process of EGF-mediated internalization of the EGF/EGF-receptor complex, suggesting that [Ca2+]i rise did not mediate receptor internalization. EGF-induced cell proliferation assessed by either thymidine incorporation into DNA, direct cell counting, and microscopic observation was not altered by oleic acid, at doses able to block EGF-mediated early signals. In conclusion, suppression of Ins(1,4,5)P3 generation and [Ca2+]i rises by oleic acid did not alter EGF-receptor internalization nor EGF-induced cell mitosis. Such results suggest that [Ca2+]i rise is not instrumental for EGF-stimulated cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号