首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clutch size varies widely in reptiles, both intraspecifically and interspecifically. The mechanisms that generate this variation have attracted detailed study, focusing primarily on ecological factors (e.g. food availability), trade‐offs with other traits (e.g. offspring size), and physical constraints (e.g. maternal body shape). Does ovarian morphology, specifically the number of germinal beds from which ova are produced, also correlate with clutch size? Our review of published data on 58 lizard species reveals that clutch size is correlated with the number of germinal beds per ovary (more fecund species have more germinal beds), and that phylogenetic changes in germinal beds have been consistently associated with concurrent phylogenetic changes in fecundity. These correlations imply a causal connection: either clutch size is constrained by ovarian morphology, and/or ovarian morphology evolves to allow adaptive shifts in clutch size. The latter hypothesis is more consistent with available data. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 81–88.  相似文献   

2.
Functional traits play a key role in driving biodiversity effects on ecosystem functioning. Here, we examine the geographical distributions of three key functional traits in New World palms (Arecaceae), an ecologically important plant group, and their relationships with current climate, soil and glacial–interglacial climate change. We combined range maps for the New World (N = 541 palm species) with data on traits (leaf size, stem height and fruit size), representing the leaf–height–seed plant strategy scheme of Westoby, to estimate median trait values for palm species assemblages in 110 × 110‐km grid cells. Spatial and non‐spatial multi‐predictor regressions were used with the Akaike Information Criterion to identify minimum adequate models. Present‐day seasonality in temperature and precipitation played a major role in explaining geographical variation of all traits. Mean annual temperature and annual precipitation were additionally important for median leaf size. Glacial–interglacial temperature change was the most important predictor for median fruit size. Large‐scale soil gradients played only a minor role overall. These results suggest that current climate (larger median trait values with increasing seasonality) and glacial–interglacial temperature change (larger median fruit size with increasing Quaternary temperature anomaly) are important drivers for functional trait distributions of New World palms. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 602–617.  相似文献   

3.
  • Plant trait-based functional spectra are crucial to assess ecosystem functions and services. Whilst most research has focused on aboveground vegetative traits (leaf economic spectrum, LES), contrasting evidence on any coordination between the LES and root economic spectrum (RES) has been reported. Studying spectra variation along environmental gradients and accounting for species' phylogenetic relatedness may help to elucidate the strength of coordination between above- and belowground trait variation.
  • We focused on leaf and root traits of 39 species sampled in three distinct habitats (front, back and slack) along a shoreline–inland gradient on coastal dunes. We tested, within a phylogenetic comparative framework, for the presence of the LES and RES, for any coordination between these spectra, and explored their relation to variation in ecological strategies along this gradient.
  • In each habitat, three-quarters of trait variation is captured in two-dimensional spectra, with species' phylogenetic relatedness moderately influencing coordination and trade-off between traits. Along the shoreline–inland gradient, aboveground traits support the LES in all habitats. Belowground traits are consistent with the RES in the back-habitat only, where the environmental constraints are weaker, and a coordination between leaf and root traits was also found, supporting the whole-plant spectrum (PES).
  • This study confirms the complexity when seeking any correlation between the LES and RES in ecosystems characterized by multiple environmental pressures, such as those investigated here. Changes in traits adopted to resist environmental constraints are similar among species, independent of their evolutionary relatedness, thus explaining the low phylogenetic contribution in support of our results.
  相似文献   

4.
Adaptive differences among species are often thought to result from developmentally constant trait differences that enhance fitness in alternative environments. Species differences in patterns of individual phenotypic plasticity can also have ecological consequences. Indeed, functionally related constant and plastic traits may interact to determine the phenotype's adaptive value in particular conditions. We compared juvenile shade avoidance traits (height and its components, internode length and node number) across two field density treatments in Polygonumpersicaria and P. hydropiper, annual plant species that co‐occur in pastures comprised of a mosaic of plant densities. We used selection analyses to test trait contributions to fitness in alternative density treatments. Seedlings of both species expressed plasticity for internode elongation in response to density; P. persicaria plants increased internode length and consequently height significantly more in high density than did those of P. hydropiper. As predicted by the shade avoidance hypothesis, increased height was adaptive for both species in high density stands, so P. persicaria plants had higher fitness in this environment. By contrast, node numbers were relatively constant across density treatments in both species: P. hydropiper seedlings consistently produced more nodes than did those of P. persicaria. This constant trait difference contributed to P. hydropiper's greater relative fitness at low density, where more nodes and hence leaves enable plants to better exploit available light. Differences between species in these juvenile shade‐avoidance traits did not result from the evolutionary constraints of lack of heritable variation or costs of plasticity. We discuss how these interspecific trait differences may have been generated by divergent selective histories resulting from differences in herbivore resistance. These results illustrate how adaptive differences in both plastic and constantly expressed traits may jointly contribute to ecological distribution, including coexistence in patchy habitats.  相似文献   

5.
Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as “adaptive” or not. Across many groups of plants, trait–climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an “economics spectrum” along which combinations of functional traits covary along a fast–slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic‐niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic‐niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait–climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.  相似文献   

6.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

7.
The microevolutionary process of adaptive phenotypic differentiation of quantitative traits between populations or closely‐related taxa depends on the response of populations to the action of natural selection. However, this response can be constrained by the structure of the matrix of additive genetic variance and covariance between traits in each population ( G matrix). In the present study, we obtained additive genetic variance and narrow sense heritability for 25 floral and vegetative traits of three subspecies of Aquilegia vulgaris, and one subspecies of Aquilegia pyrenaica through a common garden crossing experiment. For two vegetative and one floral trait, we also obtained the G matrix and genetic correlations between traits in each subspecies. The amount of genetic variation available in wild populations is not responsible for the larger differentiation of vegetative than floral traits found in this group of columbines. However, the low heritability of some traits constrained their evolution because phenotypic variability among taxa was larger for traits with larger heritability. We confirmed that the process of diversification of the studied taxa involved shifts in the G matrix, mainly determined by changes in the genetic covariance between floral and vegetative traits, probably caused by linkage disequilibrium in narrow endemic taxa. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 252–261.  相似文献   

8.
The phenotypic plasticity of plants has been explored as a function of either ontogeny (apparent plasticity) or environment (adaptive plasticity), although few studies have analyzed these factors together. In the present study, we take advantage of the dispersal of Aechmea mertensii bromeliads by Camponotus femoratus or Pachycondyla goeldii ants in shaded and sunny environments, respectively, to quantify ontogenetic changes in morphological, foliar, and functional traits, and to analyze ontogenetic and ant species effects on 14 traits. Most of the morphological (plant height, number of leaves), foliar (leaf thickness, leaf mass area, total water content, trichome density), and functional (leaf δ13C) traits differed as a function of ontogeny. Conversely, only leaf δ15N showed an adaptive phenotypic plasticity. On the other hand, plant width, tank width, longest leaf length, stomatal density, and leaf C concentration showed an adaptation to local environment with ontogeny. The exception was leaf N concentration, which showed no trend at all. Aechmea mertensii did not show an abrupt morphological modification such as in heteroblastic bromeliads, although it was characterized by strong, size‐related functional modifications for CO2 acquisition. The adaptive phenotypic variation found between the two ant species indicates the spatially conditioned plasticity of A. mertensii in the context of insect‐assisted dispersal. However, ant‐mediated effects on phenotypic plasticity in A. mertensii are not obvious because ant species and light environment are confounding variables. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 299–312.  相似文献   

9.
Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait–environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait–environment correlations and literature‐based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient‐wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.  相似文献   

10.
There has been recent debate about the expected allometry of sexually‐selected traits. Although sexually‐selected traits exhibit a diversity of allometric patterns, signalling characters are frequently positively allometric. By contrast, insect genitalia tend to be negatively allometric, although the allometry of nongenital sexually‐selected characters in insects is largely unknown (with some notable exceptions). It has also been suggested that there should be a negative association between the asymmetry and size of bilaterally‐paired, sexually‐selected traits, although this claim is controversial. We assessed the allometry and asymmetry (fluctuating asymmetry, FA) of a nongenital contact–courtship structure, the sex comb, in replicate populations of three species of Drosophila (we also measured wing FA). Sex combs are sexually‐selected characters used to grasp the female's abdomen and genitalia and to spread her wings prior to and during copulation. Although species differed in the size of the sex combs, all combs were positively allometric, and comb allometry did not generally differ significantly between species or populations. Comb and wing asymmetry did vary across species, although not across populations of the same species. However, FA was trait specific and was never negatively associated with trait size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 923–934.  相似文献   

11.
The phenology and morphology of Mediterranean plants are constrained by drought in summer and cold temperatures in winter. In this study we examine how climatic factors and phylogenetic constraints have shaped variation in the phenology and morphology of 17 species of the genus Cyclamen cultivated in uniform garden conditions. We quantify the extent to which traits differ among subgenera and thus represent conserved traits within evolutionary lineages. We also explore whether leaf, flowering and seed-release phenology are correlated among species, and thus whether variation in flowering phenology results from selection on dispersal phenology. Our results show a significant influence of subgenus membership on leaf and flowering phenology but not on morphological traits or the timing of seed release. Among-species variation in foliage height, leaf size and seed mass (but not in floral traits) is correlated with chromosome number. Leaf traits show that species with a shorter vegetative period have a higher capacity for resource acquisition. Major phenological shifts, i.e. spring vs. autumn flowering and a decoupling of leaf and flower phenology in autumnal flowering species, thus occurred prior to the diversification of species in each subgenus and not as a response to selection on dispersal timing. Leaf and flowering phenology illustrate a gradient of strategies from autumn flowering in the absence of leaves (hysteranthous species) to spring flowering with fully developed foliage (synanthous species). In the former, flowering is uncoupled from resource acquisition by simultaneous photosynthesis, indicative that hysteranthy is a response to temporal unpredictability in the onset of rain after the summer drought. Our results support the idea that whereas leaf development is controlled primarily by moisture availability and secondarily by temperature, flowering is temperature dependent, above a minimum moisture threshold. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 469–484.  相似文献   

12.
The repeated occurrence of similar morphologies in organisms from similar habitats provides good evidence of convergent selection, and convergent patterns of evolutionary change. In lizards, a flattened morphology has often been noted; however, whether this trait is convergent in specific habitats has never been tested using phylogenetic methods. The present study examined patterns of morphological convergence in 18 species of tropical Lygosomine skinks from three broad habitat categories (generalist, leaf litter-dwelling, and rock-using species). In general, although there where relatively few morphological differences of species from different habitats, phylogenetic analyses revealed that rock-using species have consistently and repeatedly evolved a dorsoventrally flattened head and body. The adaptive basis of this flattened morphology is consistent with both biomechanical predictions of performance (e.g. climbing locomotion) and ecology (e.g. use of rock crevices, camouflage) of species that occupy rocky habitats.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 399–411.  相似文献   

13.
Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate‐vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open‐top chambers (OTCs) to passively warm vegetation by 1–2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf δ15N. Long‐term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect δ15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.  相似文献   

14.
Developmental constraints and selective pressures interact to determine the strength of allometric scaling relationships between body size and the size of morphological traits among related species. Different traits are expected to relate to body size with different scaling exponents, depending on how their function changes disproportionately with increasing body size. For trematodes parasitic in vertebrate guts, the risk of being dislodged should increase disproportionately with body size, whereas basic physiological functions are more likely to increase in proportion to changes in body size. Allometric scaling exponents for attachment structures should thus be higher than those for other structures and should be higher for trematode families using endothermic hosts than for those using ectotherms, given the feeding and digestive characteristics of these hosts. These predictions are tested with data on 363 species from 13 trematode families. Sizes of four morphological structures were investigated, two associated with attachment (oral and ventral suckers) and the other two with feeding and reproduction (pharynx and cirrus sac). The scaling exponents obtained were generally low, the majority falling between 0.2 and 0.5. There were no consistent differences within families between the magnitude of scaling exponents for different structures. Also, there was no difference in the values of scaling exponents between families exploiting endothermic hosts and those using ectotherms. There were strong correlations across families between the values of the scaling exponents for the oral sucker, the ventral sucker and the pharynx: in families where the size of one trait increases relatively steeply as a function of body size, the same is generally true of the other traits. These results suggest either that developmental constraints link several morphological features independently of their specific roles or that similar selection pressures operate on different structures, leading to covariation of scaling exponents. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 533–540.  相似文献   

15.
Because plants are unable to move away from unfavourable habitats and environmental perturbations, leaf phenotypic plasticity facilitates light absorption and gas exchange. Oaks (Quercus spp.) are particularly known for their adaptability and plastic phenotypes, and leaf allometry and developmental instability may represent important mechanisms for their adaptation to environments and evolution. Because of its important role in the adaptation of plant populations to different environments, allometry can be involved in diversifying selection. Developmental instability is related to environmental perturbations and stresses by producing random deviations in structures characterized by bilateral symmetry, such as oak leaves. In addition, developmental instability can also arise from genetic bottlenecks or as a result of hybridization. The splitting of symmetric and asymmetric components of variation and their separate analysis allows the variability in leaf shape traits to be summarized, reducing the variation produced by developmental instability. The geometric morphometric approach is a useful method for the study of leaf asymmetry and allometric patterns. This method provides an important tool for the visualization of shape attributes that characterize species with highly variable leaf phenotypic patterns. In this study, leaf shape and size variability of three white oak species was investigated by means of a two‐dimensional landmark‐based method providing improved knowledge of variance partitioning, species discrimination, fluctuating asymmetry and allometric patterns of variation resulting from the different analyses. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 335–348.  相似文献   

16.
Leaf size and leaf display of thirty-eight tropical tree species   总被引:1,自引:0,他引:1  
Poorter L  Rozendaal DM 《Oecologia》2008,158(1):35-46
Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We examined 11 metamer traits of sun and shade trees of 38 coexisting moist forest tree species and determined the relative strengths of intra- and interspecific variation. Species-specific metamer traits were related to two variables that represent important life history variation; the regeneration light requirements and average leaf size of the species. Metamer traits varied strongly across species and, in contrast to our expectation, showed only modest changes in response to light. Intra- and interspecific responses to light were only congruent for a third of the traits evaluated. Four traits, amongst which leaf size, specific leaf area (SLA), and leaf area ratio at the metamer level (LAR) showed even opposite intra- and interspecific responses to light. Strikingly, these are classic traits that are thought to be of paramount importance for plant performance but that have completely different consequences within and across species. Sun trees of a given species had small leaves to reduce the heat load, but light-demanding species had large leaves compared to shade-tolerants, probably to outcompete their neighbors. Shade trees of a given species had a high SLA and LAR to capture more light in a light-limited environment, whereas shade-tolerant species have well-protected leaves with a low SLA compared to light-demanding species, probably to deter herbivores and enhance leaf lifespan. There was a leaf-size-mediated trade-off between biomechanical and hydraulic safety, and the efficiency with which species can space their leaves and forage for light. Unexpectedly, metamer traits were more closely linked to leaf size than to regeneration light requirements, probably because leaf-size-related biomechanical and vascular constraints limit the trait combinations that are physically possible. This suggests that the leaf size spectrum overrules more subtle variation caused by the leaf economics spectrum, and that leaf size represents a more important strategy axis than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

18.
Recent studies have linked static allometry of sexual traits to selective advantages, in terms of sexual selection. An underlying, yet untested, assumption is that the allometry of sexual traits confers higher mating success and/or survival. Here, we investigated whether the allometry of two sexual traits is related to male mating success and survival in two species of damselflies: wing size in Paraphlebia zoe and the red‐pigmented wing spot in Hetaerina americana. We used large field‐based data sets of marked‐recaptured animals, in which we recorded male mating success and survival. Both sexual traits exhibited hyperallometric patterns; however, allometry was not linked to either mating success or survival. These results indicate that, at least during the period of sexual competition, allometry does not seem to be adaptive. Although our results may only apply to our damselfly study subjects (which nevertheless would require further tests in different seasons and/or study sites), our findings should encourage researchers to evaluate at least whether the assumed adaptiveness of sexual trait allometry holds for their study animals. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 327–334.  相似文献   

19.
竹类植物作为一种克隆植物, 无次生生长过程, 具有独特的生长和繁殖特性。但有关不同类群竹类植物功能性状的变异规律所知甚少。本文以在中国分布的34属534种竹类植物为研究对象, 从Flora of China中收集和整理其秆高、直径、节间长、竹壁厚、叶长、叶宽等基本形态学功能性状, 根据竹类植物生物学特性, 按地下茎划分为丛生、散生和混生3个类群, 按出笋季节划分为春、夏、秋、冬4个类群, 按分布范围划分为中国特有(371个中国特有种)和非特有2个类群, 再采用方差分析和多重比较探讨不同类群竹类植物在基本形态学性状上的分异格局, 采用主成分分析揭示各个功能性状之间的内在关联, 剖析不同类群竹类植物功能性状的变异。结果表明: 丛生竹、散生竹和混生竹之间功能性状差异显著, 丛生竹具有最大的秆高、直径、节间长、竹壁厚, 最小的叶长和叶宽, 散生竹次之, 而混生竹则具有最小的秆性状和最大的叶性状。中国特有种在秆高、直径、竹壁厚、叶长方面显著小于非特有种。竹类植物秆高、直径、节间长、竹壁厚之间均呈显著正相关, 叶长和叶宽之间存在显著正相关。竹类植物在垂直方向上的大小性状(主要包括直径、秆高和竹壁厚)在第一主轴具有较大的贡献率, 而在水平方向上的叶片功能性状(叶长和叶宽)在第二主轴上贡献率最大。由此可见, 竹类植物在水平方向和垂直方向上对光资源的捕获差异可能是驱动竹类植物系统演化、特有性分布和出笋季节差异的关键因素。  相似文献   

20.
Predictions of how vegetation responds to spatial and temporal differences in climate rely on established links with plant functional traits and vegetation types that can be encoded into Dynamic Global Vegetation Models. Individual traits have been linked to climate at species level and at community level within regions. However, a recent global assessment of aggregated community level traits found unexpectedly weak links with macroclimate, bringing into question broadscale trait–climate associations and implicating local-scale environmental differences in the filtering of communities. To further evaluate patterns in light of these somewhat contradictory results, we quantified the power of macro-environmental variables to explain aggregated plant community traits, taking advantage of new trait data for leaf area, plant height and seed mass combined with a national survey that records cover-abundance using consistent methods for a large number of plots across Australia. In contrast to the global study, we found that abundance-weighted community mean and variance of leaf area and maximum height were correlated with macroclimate. Height and leaf area were highest in wet (especially warm, wet) environments, with actual evapotranspiration explaining 30% of variation in leaf area and 26% in maximum height. Seed mass was weakly related to environment, with no variable explaining more than 5% of variance. Considering all three traits together in a redundancy analysis, the complete set of environmental variables explained 43% of variation in site-mean traits and 29% of within-site trait variance. While significant trait variation remains unexplained, the trait–environment relationships reported here suggest climatically-driven filtering plays a strong role in assembling these vegetation communities. Regional assessments using standardised species abundances can therefore be used to predict aspects of vegetation function. Our quantification of plant community trait patterns along macroclimatic gradients at continental scale thereby contributes a much-needed functional basis for Australian vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号