首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterotrimeric GTP-binding proteins transduce receptor-mediated extracellular signals to their effectors. Several activated mutations of Gsα and Giα have been shown to be associated with endocrine tumors. In this report, we have evaluated the transforming activity of an putative activated form of Gα12 subunit. We found that transient expression in NIH3T3 cells of the Gα12 mutant with substitution of glutamine-229 for leucine could lead to focus formation and that stably transfected NIH3T3 cells could form colonies in soft agar and tumors in nude mice.  相似文献   

2.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   

3.
As molecular on–off switches, heterotrimeric G protein complexes, comprised of a Gα subunit and an obligate Gβγ dimer, transmit extracellular signals received by G protein–coupled receptors (GPCRs) to cytoplasmic targets that respond to biotic and abiotic stimuli. Signal transduction is modulated by phosphorylation of GPCRs and G protein complexes. In Arabidopsis thaliana, the Gα subunit AtGPA1 is phosphorylated by the receptor‐like kinase (RLK) BRI1‐associated Kinase 1 (BAK1), but the extent that other RLKs phosphorylates AtGPA1 is unknown. Twenty‐two trans‐phosphorylation sites on AtGPA1 are mapped by 12 RLKs hypothesized to act in the Arabidopsis G protein signaling pathway. Cis‐phosphorylation sites are also identified on these RLKs, some newly shown to be dual specific kinases. Multiple sites are present in the core AtGPA1 functional units, including pSer52 and/or pThr53 of the conserved P‐loop that directly binds nucleotide/phosphate, pThr164, and pSer175 from αE helix in the intramolecular domain interface for nucleotide exchange and GTP hydrolysis, and pThr193 and/or pThr194 in Switch I (SwI) that coordinates nucleotide exchange and protein partner binding. Several AtGPA1 S/T phosphorylation sites are potentially nucleotide‐dependent phosphorylation patterns, such as Ser52/Thr53 in the P‐loop and Thr193 and/or Thr194 in SwI.  相似文献   

4.
Cardiac fibrosis critically injured the cardiac structure and function of the hypertensive patients. However, the anti‐fibrotic strategy is still far from satisfaction. This study aims to determine the effect and mechanism of Pirfenidone (PFD), an anti‐lung fibrosis medicine, in the treatment of cardiac fibrosis and heart failure induced by pressure overload. Male C57BL/6 mice were subjected to thoracic aorta constriction (TAC) or sham surgery with the vehicle, PFD (300 mg/kg/day) or Captopril (CAP, 20 mg/kg/day). After 8 weeks of surgery, mice were tested by echocardiography, and then sacrificed followed by morphological and molecular biological analysis. Compared to the sham mice, TAC mice showed a remarkable cardiac hypertrophy, interstitial and perivascular fibrosis and resultant heart failure, which were reversed by PFD and CAP significantly. The enhanced cardiac expression of TGF‐β1 and phosphorylation of Smad3 in TAC mice were both restrained by PFD. Cardiac fibroblasts isolated from adult C57BL/6 mice were treated by Angiotensin II, which led to significant increases in cellular proliferation and levels of α‐SMA, vimentin, TGF‐β1 and phosphorylated TGF‐β receptor and Smad3. These changes were markedly inhibited by pre‐treatment of PFD. Collectively, PFD attenuates myocardial fibrosis and dysfunction induced by pressure overload via inhibiting the activation of TGF‐β1/Smad3 signalling pathway.  相似文献   

5.
Prolonged pathological myocardial hypertrophy leads to end‐stage heart failure. Thymoquinone (TQ), a bioactive component extracted from Nigella sativa seeds, is extensively used in ethnomedicine to treat a broad spectrum of disorders. However, it remains unclear whether TQ protects the heart from pathological hypertrophy. This study was conducted to examine the potential utility of TQ for treatment of pathological cardiac hypertrophy and if so, to elucidate the underlying mechanisms. Male C57BL/6J mice underwent either transverse aortic constriction (TAC) or sham operation, followed by TQ treatment for six consecutive weeks. In vitro experiments consisted of neonatal rat cardiomyocytes (NRCMs) that were exposed to phenylephrine (PE) stimulation to induce cardiomyocyte hypertrophy. In this study, we observed that systemic administration of TQ preserved cardiac contractile function, and alleviated cardiac hypertrophy, fibrosis and oxidative stress in TAC‐challenged mice. The in vitro experiments showed that TQ treatment attenuated the PE‐induced hypertrophic response in NRCMs. Mechanistical experiments showed that supplementation of TQ induced reactivation of the AMP‐activated protein kinase (AMPK) with concomitant inhibition of ERK 1/2, p38 and JNK1/2 MAPK cascades. Furthermore, we demonstrated that compound C, an AMPK inhibitor, abolished the protective effects of TQ in in vivo and in vitro experiments. Altogether, our study disclosed that TQ provides protection against myocardial hypertrophy in an AMPK‐dependent manner and identified it as a promising agent for the treatment of myocardial hypertrophy.  相似文献   

6.
7.
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor‐like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G‐protein‐coupled‐receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1‐like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt‐induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1‐independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.  相似文献   

8.
Heterotrimeric G‐proteins are cellular signal transducers. They mainly relay signals from G‐protein‐coupled receptors (GPCRs). GPCRs function as guanine nucleotide‐exchange factors to active these G‐proteins. Based on the sequence and functional similarities, these G‐proteins are grouped into four subfamilies: Gs, Gi, Gq, and G12/13. The G12/13 subfamily consists of two members: G12 and G13. G12/13‐mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. Here we summarize the signaling mechanisms and physiological functions of Gα13 in blood vessel formation and bone homeostasis. We further discuss the expanding roles of Gα13 in cancers, serving as oncogenes as well as tumor suppressors.  相似文献   

9.
10.
11.
12.
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G‐protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs was detected by real‐time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15‐week‐old apoE knockout mice. Compared to wild‐type mice, RGS3 expression was lower while α‐SMA, TGF‐β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs derived from apoE(?/?) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF‐β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.  相似文献   

13.
14.
Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload‐induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and β‐myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1.  相似文献   

15.
Two 8‐µs all‐atom molecular dynamics simulations have been performed on the two highly homologous G protein‐coupled receptor (GPCR) subtypes, β1‐ and β2‐adrenergic receptors, which were embedded in a lipid bilayer with randomly dispersed cholesterol molecules. During the simulations, cholesterol molecules accumulate to different surface regions of the two receptors, suggesting the subtype specificity of cholesterol–β‐adrenergic receptor interaction and providing some clues to the physiological difference of the two subtypes. Meanwhile, comparison between the two receptors in interacting with cholesterols shed some new light on general determinants of cholesterol binding to GPCRs. Our results indicate that although the concave surface, charged residues and aromatic residues are important, neither of these stabilizing factors is indispensable for a cholesterol interaction site. Different combinations of these factors lead to the diversified binding modes of cholesterol binding to the receptors. Our long‐time simulations, for the first time, revealed the pathway of a cholesterol molecule entering the consensus cholesterol motif (CCM) site, and the binding process of cholesterol to CCM is accompanied by a side chain flipping of the conserved Trp4.50. Moreover, the simulation results suggest that the I‐/V‐/L‐rich region on the extracellular parts of helix 6 might be an alternatively conserved cholesterol‐binding site for the class‐A GPCRs. Proteins 2014; 82:760–770. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation.  相似文献   

17.
The rice heterotrimeric G‐protein complex, a guanine‐nucleotide‐dependent on‐off switch, mediates vital cellular processes and responses to biotic and abiotic stress. Exchange of bound GDP (resting state) for GTP (active state) is spontaneous in plants including rice and thus there is no need for promoting guanine nucleotide exchange in vivo as a mechanism for regulating the active state of signaling as it is well known for animal G signaling. As such, a master regulator controlling the G‐protein activation state is unknown in plants. Therefore, an ab initio approach is taken to discover candidate regulators. The rice Gα subunit (RGA1) is used as bait to screen for nucleotide‐dependent protein partners. A total of 264 proteins are identified by tandem mass spectrometry of which 32 were specific to the GDP‐bound inactive state and 22 specific to the transition state. Approximately, 10% are validated as previously identified G‐protein interactors.  相似文献   

18.
Dimerization of G protein‐coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin‐converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C‐terminal residues of vasoactive peptides including apelin‐13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co‐immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α‐subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.  相似文献   

19.
We have isolated from the olfactory organ of the American lobster (Homarus americanus) two cDNA clones with homology to β subunits of G proteins. LobGβ1 contained a complete open reading frame that predicted an amino acid sequence with >80% identity to Gβ sequences from other species. LobGβ2 was a fragment of an open reading frame whose predicted amino acid sequence had 65–69% identity to other Gβ sequences. LobGβ2 mRNA was not detectable in the brain, eye plus eyestalk, leg, dactyl, olfactory organ, or tail muscle. In contrast, lobGβ1 was expressed in all these tissues as a single mRNA species of 6.4 kb and a protein of 37 kD. In the brain and olfactory organ, Gβ immunoreactivity was almost exclusively confined to neurites: the neuropil regions of the brain and the outer dendrites of the olfactory receptor neurons. Coimmunoprecipitation revealed that lobster Gβ interacted with both Gαs and Gαq. LobGβ1 is likely to be involved in a wide range of signaling events including olfactory transduction and synaptic transmission in the brain. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 525–536  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号