首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
Metabolic network modeling of microbial communities provides an in‐depth understanding of community‐wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high‐quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community‐level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph–heterotroph consortium that was used to provide data needed for a community‐level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources. J. Cell. Physiol. 231: 2339–2345, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

2.
3.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

4.
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.  相似文献   

5.
A fundamental challenge in Systems Biology is whether a cell‐scale metabolic model can predict patterns of genome evolution by realistically accounting for associated biochemical constraints. Here, we study the order in which genes are lost in an in silico evolutionary process, leading from the metabolic network of Eschericia coli to that of the endosymbiont Buchnera aphidicola. We examine how this order correlates with the order by which the genes were actually lost, as estimated from a phylogenetic reconstruction. By optimizing this correlation across the space of potential growth and biomass conditions, we compute an upper bound estimate on the model's prediction accuracy (R=0.54). The model's network‐based predictive ability outperforms predictions obtained using genomic features of individual genes, reflecting the effect of selection imposed by metabolic stoichiometric constraints. Thus, while the timing of gene loss might be expected to be a completely stochastic evolutionary process, remarkably, we find that metabolic considerations, on their own, make a marked 40% contribution to determining when such losses occur.  相似文献   

6.
The fruit essential oils of two populations of Astrantia major L. (Apiaceae, subfamily Saniculoideae) were analyzed in detail by GC and GC/MS analyses. Seventy‐six constituents identified accounted for 92.7–94.0% of the oils. The two oils differed significantly: the wild‐growing population from Serbia contained zingiberene (47.9%), β‐bisabolene (9.7%), and β‐sesquiphellandrene (7.9%), while the one from Poland (botanical gardens) was sesquiterpene‐poor with the major contributors oleic acid (38.6%), nonacosane (15.4%), and linoleic acid (5.1%). Motivated by the unresolved taxonomical relations between the Saniculoideae and Apioideae subfamilies, we performed multivariate statistical analyses on the compositional data of these A. major samples, and additional 14 Saniculoideae and 31 Apioideae taxa. This allowed us to assess the chemotaxonomical usefulness of such chemical data in differentiating taxa from these two Apiaceae subfamilies and to corroborate the existence of at least two A. major chemotypes. Diethyl ether extracts of the two samples of A. major fruits yielded seven diaryltetrahydrofurofurano lignans. Except for eudesmin that has been found for the first time in a Saniculoideae taxon, all other lignans (magnolin, epimagnolins A and B, epieudesmin, yangambin, and epiyangambin) are new for the entire plant family Apiaceae. The lignan profiles also supported the existence of two separate A. major chemotypes.  相似文献   

7.
8.
9.
Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint‐based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time‐dependent changes, albeit using a static model. By performing an in silico knock‐out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.  相似文献   

10.
We identified a Leishmania major‐specific gene that can partly compensate for the loss of virulence observed for L. major HSP100 null mutants. The gene, encoding a 46 kD protein of unknown function and lineage, also enhances the virulence of wild type L. major upon overexpression. Surprisingly, the approximately sixfold overexpression of this protein also extends the host range of L. major to normally resistant C57BL/6 mice, causing persisting lesions in this strain, even while eliciting a strong cellular immune response. This enhanced virulence in vivo is mirrored in vitro by increased parasite burden inside bone marrow‐derived macrophages. The localization of the protein in the macrophage cytoplasm suggests that it may modulate the macrophage effector mechanisms. In summary, our data show that even minor changes of gene expression in L. major may alter the outcome of an infection, regardless of the host's genetic predisposition.  相似文献   

11.
Brown algae (stramenopiles) are key players in intertidal ecosystems, and represent a source of biomass with several industrial applications. Ectocarpus siliculosus is a model to study the biology of these organisms. Its genome has been sequenced and a number of post‐genomic tools have been implemented. Based on this knowledge, we report the reconstruction and analysis of a genome‐scale metabolic network for E. siliculosus, EctoGEM ( http://ectogem.irisa.fr ). This atlas of metabolic pathways consists of 1866 reactions and 2020 metabolites, and its construction was performed by means of an integrative computational approach for identifying metabolic pathways, gap filling and manual refinement. The capability of the network to produce biomass was validated by flux balance analysis. EctoGEM enabled the reannotation of 56 genes within the E. siliculosus genome, and shed light on the evolution of metabolic processes. For example, E. siliculosus has the potential to produce phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase, as is found in other stramenopiles. It also possesses the complete eukaryote molybdenum co‐factor biosynthesis pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene transfer from cyanobacteria by a common ancestor of stramenopiles. EctoGEM represents an evolving community resource to gain deeper understanding of the biology of brown algae and the diversification of physiological processes. The integrative computational method applied for its reconstruction will be valuable to set up similar approaches for other organisms distant from biological benchmark models.  相似文献   

12.
We have developed an assay based on rice embryogenic callus for rapid functional characterization of metabolic genes. We validated the assay using a selection of well‐characterized genes with known functions in the carotenoid biosynthesis pathway, allowing rapid visual screening of callus phenotypes based on tissue color. We then used the system to identify the functions of two uncharacterized genes: a chemically synthesized β–carotene ketolase gene optimized for maize codon usage, and a wild‐type Arabidopsis thaliana ortholog of the cauliflower Orange gene. In contrast to previous reports (Lopez, A.B., Van Eck, J., Conlin, B.J., Paolillo, D.J., O'Neill, J. and Li, L. ( 2008 ) J. Exp. Bot. 59, 213–223; Lu, S., Van Eck, J., Zhou, X., Lopez, A.B., O'Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Küpper, H., Earle, E.D., Cao, J. and Li, L. ( 2006 ) Plant Cell 18, 3594–3605), we found that the wild‐type Orange allele was sufficient to induce chromoplast differentiation. We also found that chromoplast differentiation was induced by increasing the availability of precursors and thus driving flux through the pathway, even in the absence of Orange. Remarkably, we found that diverse endosperm‐specific promoters were highly active in rice callus despite their restricted activity in mature plants. Our callus system provides a unique opportunity to predict the effect of metabolic engineering in complex pathways, and provides a starting point for quantitative modeling and the rational design of engineering strategies using synthetic biology. We discuss the impact of our data on analysis and engineering of the carotenoid biosynthesis pathway.  相似文献   

13.
14.
15.
Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major’s tropism for cutaneous infections.  相似文献   

16.
17.
Although the genomes of many microbial pathogens have been studied to help identify effective drug targets and novel drugs, such efforts have not yet reached full fruition. In this study, we report a systems biological approach that efficiently utilizes genomic information for drug targeting and discovery, and apply this approach to the opportunistic pathogen Vibrio vulnificus CMCP6. First, we partially re‐sequenced and fully re‐annotated the V. vulnificus CMCP6 genome, and accordingly reconstructed its genome‐scale metabolic network, VvuMBEL943. The validated network model was employed to systematically predict drug targets using the concept of metabolite essentiality, along with additional filtering criteria. Target genes encoding enzymes that interact with the five essential metabolites finally selected were experimentally validated. These five essential metabolites are critical to the survival of the cell, and hence were used to guide the cost‐effective selection of chemical analogs, which were then screened for antimicrobial activity in a whole‐cell assay. This approach is expected to help fill the existing gap between genomics and drug discovery.  相似文献   

18.
Leishmania are kinetoplastid parasites that cause the sandfly‐transmitted disease leishmaniasis. To maintain fitness throughout their infectious life cycle, Leishmania must undergo rapid metabolic adaptations to the dramatically distinct environments encountered during transition between sandfly and vertebrate hosts. We performed proteomic and immunoblot analyses of attenuated L. major strains deficient for LACK, the Leishmania ortholog of the mammalian receptor for activated c kinase (RACK1), that is important for parasite thermotolerance and virulence. This approach identified cytochrome c oxidase (LmCOX) subunit IV as a LACK‐dependent fitness protein. Consistent with decreased levels of LmCOX subunit IV at mammalian temperature, and in amastigotes, LmCOX activity and mitochondrial function were also impaired in LACK‐deficient L. major under these conditions. Importantly, overexpression of LmCOX subunit IV in LACK‐deficient L. major restored thermotolerance and macrophage infectivity. Interestingly, overexpression of LmCOX subunit IV enhanced LmCOX subunit VI expression at mammalian temperature. Collectively, our data suggest LACK promotes Leishmania adaptation to the mammalian host environment by sustaining LmCOX subunit IV expression and hence energy metabolism in response to stress stimuli such as heat. These findings extend the repertoire of RACK1 protein utility to include a role in mitochondrial function.  相似文献   

19.
20.
The Antarctic strain Pseudoalteromonas haloplanktis TAC125 is one of the model organisms of cold‐adapted bacteria and is currently exploited as a new alternative expression host for numerous biotechnological applications. Here, we investigated several metabolic features of this strain through in silico modelling and functional integration of –omics data. A genome‐scale metabolic model of P. haloplanktis TAC125 was reconstructed, encompassing information on 721 genes, 1133 metabolites and 1322 reactions. The predictive potential of this model was validated against a set of experimentally determined growth rates and a large dataset of growth phenotypic data. Furthermore, evidence synthesis from proteomics, phenomics, physiology and metabolic modelling data revealed possible drawbacks of cold‐dependent changes in gene expression on the overall metabolic network of P. haloplanktis TAC125. These included, for example, variations in its central metabolism, amino acid degradation and fatty acid biosynthesis. The genome‐scale metabolic model described here is the first one reconstructed so far for an Antarctic microbial strain. It allowed a system‐level investigation of variations in cellular metabolic fluxes following a temperature downshift. It represents a valuable platform for further investigations on P. haloplanktis TAC125 cellular functional states and for the design of more focused strategies for its possible biotechnological exploitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号