首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The seasonal availability of food resources is an important factor shaping the life‐history strategies of organisms. During times of nutritional restriction, physiological trade‐offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis (Brucella abortus) may be maintained in Yellowstone bison based on the seasonality of food resources and the life‐history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus, in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell‐mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade‐offs that suppress immune function and create infection and transmission opportunities for pathogens.  相似文献   

3.
The immune system eliminates Chlamydia trachomatis infection through inflammation. However, uncontrolled inflammation can enhance pathology. In mice, TNF-related apoptosis-inducing ligand receptor (TRAIL-R), known for its effects on apoptosis, also regulates inflammation. In humans, the four homologues of TRAIL-R had never been investigated for effects on inflammation. Here, we examined whether TRAIL-R regulates inflammation during chlamydial infection. We examined TRAIL-R1 single nucleotide polymorphisms (SNPs) in an Ecuadorian cohort with and without C. trachomatis infections. There was a highly significant association for the TRAIL+626 homozygous mutant GG for infection vs no infection in this population. To confirm the results observed in the human population, primary lung fibroblasts and bone marrow-derived macrophages (BMDMs) were isolated from wildtype (WT) and TRAIL-R-deficient mice, and TRAIL-R1 levels in human cervical epithelial cells were depleted by RNA interference. Infection of BMDMs and primary lung fibroblasts with C. trachomatis strain L2, or the murine pathogen C. muridarum, led to higher levels of MIP2 mRNA expression or IL-1β secretion from TRAIL-R-deficient cells than WT cells. Similarly, depletion of TRAIL-R1 expression in human epithelial cells resulted in a higher level of IL-8 mRNA expression and protein secretion during C. trachomatis infection. We conclude that human TRAIL-R1 SNPs and murine TRAIL-R modulate the innate immune response against chlamydial infection. This is the first evidence that human TRAIL-R1 is a negative regulator of inflammation and plays a role in modulating Chlamydia pathogenesis.  相似文献   

4.
Chlamydia trachomatis is an obligate intracellular Gram‐negative pathogen affecting over 600 million people worldwide with 92 million new cases occurring globally each year. C. trachomatis enter the cells and replicate to infect different tissues/organs, giving rise to a spectrum of pathological conditions; however, the exact mechanism or receptor(s) for their entry is not well understood. Here we report that CFTR (cystic fibrosis transmembrane conductance regulator), an apical epithelial anion channel, is required for cellular entry and internalization of C. trachomatis. Human epithelial cell lines expressing functional CFTR internalized more C. trachomatis than the cells expressing mutant Δ508 CFTR. The in vitro cellular uptake of C. trachomatis can be blocked by CFTR inhibitors or antibody, and the in vivo cellular uptake of C. trachomatis in CFTR mutant (CFTR?/?) mice was significantly less compared with that in the wild‐type. Direct interaction between CFTR and C. trachomatis LPS (lipopolysaccharide) is demonstrated by their immune‐co‐localization and co‐immunoprecipitation. Despite an increase in CFTR expression observed upon C. trachomatis LPS challenge, a reduction in its ion channel activity is observed, consistent with the notion that CFTR functions as a receptor for cellular entry and internationization of C. trachomatis, with compromised ion‐channel function. These findings, for the first time, demonstrate that CFTR functions as a cell‐surface receptor for epithelial cell entry, and internalization of C. trachomatis and these findings may lead to the development of new treatment strategies to curtail the spread of chlamydial infections.  相似文献   

5.
Brucella abortus elicits a vigorous Th1 immune response which activates cytotoxic T lymphocytes. However, B. abortus persists in its hosts in the presence of CD8+ T cells, establishing a chronic infection. Here, we report that B. abortus infection of human monocytes/macrophages inhibited the IFN‐γ‐induced MHC‐I cell surface expression. This phenomenon was dependent on metabolically active viable bacteria. MHC‐I down‐modulation correlated with the development of diminished CD8+ cytotoxic T cell response as evidenced by the reduced expression of the activation marker CD107a on CD8+ T lymphocytes and a diminished percentage of IFN‐γ‐producing CD8+ T cells. Inhibition of MHC‐I expression was not due to changes in protein synthesis. Rather, we observed that upon B. abortus infection MHC‐I molecules were retained within the Golgi apparatus. Overall, these results describe a novel mechanism based on the intracellular sequestration of MHC‐I molecules whereby B. abortus would avoid CD8+ cytotoxic T cell responses, evading their immunological surveillance.  相似文献   

6.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen of medical importance. C. trachomatis develops inside a membranous vacuole in the cytosol of epithelial cells but manipulates the host cell in numerous ways. One prominent effect of chlamydial infection is the inhibition of apoptosis in the host cell, but molecular aspects of this inhibition are unclear. Tumour necrosis factor (TNF) is a cytokine with important roles in immunity, which is produced by immune cells in chlamydial infection and which can have pro‐apoptotic and non‐apoptotic signalling activity. We here analysed the signalling through TNF in cells infected with C. trachomatis. The pro‐apoptotic signal of TNF involves the activation of caspase‐8 and is controlled by inhibitor of apoptosis proteins. We found that in C. trachomatis‐infected cells, TNF‐induced apoptosis was blocked upstream of caspase‐8 activation even when inhibitor of apoptosis proteins were inhibited or the inhibitor of caspase‐8 activation, cFLIP, was targeted by RNAi. However, when caspase‐8 was directly activated by experimental over‐expression of its upstream adapter Fas‐associated protein with death domain, C. trachomatis was unable to inhibit apoptosis. Non‐apoptotic TNF‐signalling, particularly the activation of NF‐κB, initiates at the plasma membrane, while the activation of caspase‐8 and pro‐apoptotic signalling occur subsequently to internalization of TNF receptor and the formation of a cytosolic signalling complex. In C. trachomatis‐infected cells, NF‐κB activation through TNF was unaffected, while the internalization of the TNF–TNF‐receptor complex was blocked, explaining the lack of caspase‐8 activation. These results identify a dichotomy of TNF signalling in C. trachomatis‐infected cells: Apoptosis is blocked at the internalization of the TNF receptor, but non‐apoptotic signalling through this receptor remains intact, permitting a response to this cytokine at sites of infection.  相似文献   

7.
The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25‐dependent engagement of SLAMF1 by B. abortus limits NF‐κB translocation in dendritic cells (DCs) with no impact on Brucella intracellular trafficking and replication. This in turn decreases pro‐inflammatory cytokine secretion and impairs DC activation. The Omp25‐SLAMF1 axis also dampens the immune response without affecting bacterial replication in vivo during the acute phase of Brucella infection in a mouse model. In contrast, at the chronic stage of infection, the Omp25/SLAMF1 engagement is essential for Brucella persistence. Interaction of a specific bacterial protein with an immune cell receptor expressed on the DC surface at the acute stage of infection is thus a powerful mechanism to support microbe settling in its replicative niche and progression to chronicity.  相似文献   

8.
9.
10.
Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography‐tandem mass spectrometry (LC‐MS3) analysis. C. trachomatis (serovar D, MOI 1)–infected HeLa‐229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis–infected HeLa‐229 cells indicate complex host‐pathogen interactions at early phase of chlamydial infection.  相似文献   

11.
12.

Background

Waddlia chondrophila (W. chondrophila) is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus). The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila.

Methods

Human epithelial cells (HEp2) were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed.

Conclusions/Significance

W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.  相似文献   

13.
A sulphated glycosaminoglycan-dependent mechanism of microbial infection for mammailan cells was characterized for the Chlamydia trachomatis trachoma and lymphogranuloma venereum (LGV) biovars. We demonstrated that the trachoma and LGV biovars compete for the same receptor(s) on host cells and that their infectivity was inhibited by heparin or heparan sulphate. Using a specific heparan suiphate lyase (heparitinase) to treat organisms, the Infectivity of both biovars was abolished. Furthermore, exogenous heparan sulphate rescued chlamydial infectivity following treatment with heparitinase and the restored infectivity was neutralized by an anti-heparan sulphate monoclonal antibody. These data suggest that heparan sulphate-like-mediated Interactions between C. trachomatis and eukaryotic cells are essential for infectivity.  相似文献   

14.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double‐membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)‐related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy‐independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER‐associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy‐independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.  相似文献   

15.
确定沙眼衣原体CT358蛋白在衣原体感染细胞中的位置并初步鉴定其生物学功能.采用PCR方法从D型沙眼衣原体的基因组中扩增CT358基因,并克隆入pGEX和pDSRedC1表达载体中.将重组质粒pGEX-CT358转化到XL1-blue宿主菌,并诱导表达融合蛋白GST-CT358.纯化后的CT358融合蛋白免疫小鼠制备抗体,应用间接免疫荧光技术对CT358蛋白在衣原体感染细胞内的定位及表达模式进行分析.同时,pDSRedC1-CT358重组质粒瞬时转染HeLa细胞,观察CT358蛋白对衣原体感染的影响.实验结果证明CT358蛋白为沙眼衣原体包涵体膜蛋白.该蛋白质在衣原体感染12 h后就表达定位于包涵体膜上,直至持续到整个感染周期,转基因在胞浆表达的CT358融合蛋白不影响其后的衣原体感染.该研究为深入研究衣原体与宿主细胞间相互作用提供了新的线索,并可为衣原体性的治疗、预防提供新方向.  相似文献   

16.
17.
Current understanding of the immune system comes primarily from laboratory‐based studies. There has been substantial interest in examining how it functions in the wild, but studies have been limited by a lack of appropriate assays and study species. The three‐spined stickleback (Gasterosteus aculeatus L.) provides an ideal system in which to advance the study of wild immunology, but requires the development of suitable immune assays. We demonstrate that meaningful variation in the immune response of stickleback can be measured using real‐time PCR to quantify the expression of eight genes, representing the innate response and Th1‐, Th2‐ and Treg‐type adaptive responses. Assays are validated by comparing the immune expression profiles of wild and laboratory‐raised stickleback, and by examining variation across populations on North Uist, Scotland. We also compare the immune response potential of laboratory‐raised individuals from two Icelandic populations by stimulating cells in culture. Immune profiles of wild fish differed from laboratory‐raised fish from the same parental population, with immune expression patterns in the wild converging relative to those in the laboratory. Innate measures differed between wild populations, whilst the adaptive response was associated with variation in age, relative size of fish, reproductive status and S. solidus infection levels. Laboratory‐raised individuals from different populations showed markedly different innate immune response potential. The ability to combine studies in the laboratory and in the wild underlines the potential of this toolkit to advance our understanding of the ecological and evolutionary relevance of immune system variation in a natural setting.  相似文献   

18.
Outer membrane vesicles (OMVs) released by some Gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa) and monocytes (THP-1), and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8) to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively). Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.  相似文献   

19.
The inclusion membrane proteins play potentially important roles in chlamydial biology and pathogenesis. Here we localized and characterized the hypothetical protein CT440 in Chlamydia trachomatis-infected cells. The open reading frame (ORF) encoding the CT440 protein from the C. trachomatis serovar D genome was cloned into the prokaryotic expression vector pGEX-6p and expressed as a glutathione-S-transferase (GST) fusion protein in E. coli XL1-Blue. The CT440 fusion protein was used to immunize mice to raise antigen-specific antibody. After verification by Western blot and immunofluorescence assay (IFA), the specific antibody was used to localize the endogenous CT440 protein and to detect its expression pattern in Chlamydia-infected cells. Cytosolic expression of CT440 in HeLa cells was also carried out to evaluate the effect of the CT440 protein on the subsequent chlamydial infection. The results showed that the hypothetical protein CT440 was localized in the C. trachomatis inclusion membrane, and was detectable 12 h after chlamydial infection. Expression of CT440 in the cytoplasm did not inhibit the subsequent chlamydial infection. In summary, we have identified a new inclusion membrane protein that may be an important candidate for understanding C. trachomatis pathogenesis.  相似文献   

20.
Inflammasomes are important innate immune components in mammals. However, the bacterial factors modulating inflammasome activation in fish, and the mechanisms by which they alter fish immune defences, remain to be investigated. In this work, a mutant of the fish pathogen Edwardsiella piscicida (E. piscicida), called 0909I, was shown to overexpress haemolysin, which could induce a robust pyroptotic‐like cell death dependent on caspase‐5‐like activity during infection in fish nonphagocyte cells. E. piscicida haemolysin was found to mainly associate with bacterial outer membrane vesicles (OMVs), which were internalised into the fish cells via a dynamin‐dependent endocytosis and induced pyroptotic‐like cell death. Importantly, bacterial immersion infection of both larvae and adult zebrafish suggested that dysregulated expression of haemolysin alerts the innate immune system and induces intestinal inflammation to restrict bacterial colonisation in vivo. Taken together, these results suggest a critical role of zebrafish innate immunity in monitoring invaded pathogens via detecting the bacterial haemolysin‐associated OMVs and initiating pyroptotic‐like cell death. These new additions to the understanding of haemolysin‐mediated pathogenesis in vivo provide evidence for the existence of noncanonical inflammasome signalling in lower vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号