首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Salmonids spawn in highly diverse habitats, exhibit strong genetic population structuring, and can quickly colonize newly created habitats with few founders. Spawning traits often differ among populations, but it is largely unknown if these differences are adaptive or due to genetic drift. To test if sockeye salmon (Oncorhynchus nerka) populations are adapted to glacial, beach, and tributary spawning habitats, we examined variation in heritable phenotypic traits associated with spawning in 13 populations of wild sockeye salmon in Lake Clark, Alaska. These populations were commonly founded between 100 and 400 hundred sockeye salmon generations ago and exhibit low genetic divergence at 11 microsatellite loci (F ST < 0.024) that is uncorrelated with spawning habitat type. We found that mean P ST (phenotypic divergence among populations) exceeded neutral F ST for most phenotypic traits measured, indicating that phenotypic differences among populations could not be explained by genetic drift alone. Phenotypic divergence among populations was associated with spawning habitat differences, but not with neutral genetic divergence. For example, female body color was lighter and egg color was darker in glacial than non-glacial habitats. This may be due to reduced sexual selection for red spawning color in glacial habitats and an apparent trade-off in carotenoid allocation to body and egg color in females. Phenotypic plasticity is an unlikely source of phenotypic differences because Lake Clark sockeye salmon spend nearly all their lives in a common environment. Our data suggest that Lake Clark sockeye salmon populations are adapted to spawning in glacial, beach and tributary habitats and provide the first evidence of a glacial spawning ecotype in salmonids. Glacial spawning habitats are often young (i.e., <200 years old) and ephemeral. Thus, local adaptation of sockeye salmon to glacial habitats appears to have occurred recently.  相似文献   

2.
The influence of surgical implantation of an acoustic transmitter on the swimming performance, growth and survival of juvenile sockeye salmon Oncorhynchus nerka and Chinook salmon Oncorhynchus tshawytscha was examined. The transmitter had a mass of 0·7 g in air while sockeye salmon had a mass of 7·0–16·0 g and Chinook salmon had a mass of 6·7–23·1 g (a transmitter burden of 4·5–10·3% for sockeye salmon and 3·1–10·7% for Chinook salmon). Mean critical swimming speeds (Ucrit) for Chinook salmon ranged from 47·5 to 51·2 cm s?1 [4·34–4·69 body lengths (fork length, LF) s?1] and did not differ among tagged, untagged and sham‐tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46·1 cm s?1 (4·1 LF s?1), which was c. 5% less than the mean Ucrit for control and sham fish (both groups were 48·6 cm s?1 or 4·3 LF s?1). A laboratory evaluation determined that there was no difference in LF or mass among treatments (control, sham or tag) either at the start or at the end of the test period, suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon held under laboratory conditions died from the influence of surgical implantation of transmitters. In contrast, this study found that the 21 day survival differed between tagged and control groups of Chinook salmon, although this result may have been confounded by the poor health of Chinook salmon treatment groups.  相似文献   

3.
Bergmann's rule predicts that individuals are larger in more poleward populations and that this size gradient has an adaptive basis. Hence, phenotypic divergence in size traits between populations (PST) is expected to exceed the level of divergence by drift alone (FST). We measured 16 skeletal traits, body mass and wing length in 409 male and 296 female house sparrows Passer domesticus sampled in 12 populations throughout Finland, where the species has its northernmost European distributional margin. Morphometric differentiation across populations (PST) was compared with differentiation in 13 microsatellites (FST). We find that twelve traits phenotypically diverged more than FST in both sexes, and an additional two traits diverged in males. The phenotypic divergence exceeded FST in several traits to such a degree that findings were robust also to strong between‐population environmental effects. Divergence was particularly strong in dimensions of the bill, making it a strong candidate for the study of adaptive molecular genetic divergence. Divergent traits increased in size in more northern populations. We conclude that house sparrows show evidence of an adaptive latitudinal size gradient consistent with Bergmann's rule on the modest spatial scale of ca. 600 km.  相似文献   

4.
To understand the biology of organisms it is important to take into account the evolutionary forces that have acted on their constituent populations. Neutral genetic variation is often assumed to reflect variation in quantitative traits under selection, though with even low neutral divergence there can be substantial differentiation in quantitative genetic variation associated with locally adapted phenotypes. To study the relative roles of natural selection and genetic drift in shaping phenotypic variation, the levels of quantitative divergence based on phenotypes (PST) and neutral genetic divergence (FST) can be compared. Such a comparison was made between 10 populations of Finnish House Sparrows (= 238 individuals) collected in 2009 across the whole country. Phenotypic variation in tarsus‐length, wing‐length, bill‐depth, bill‐length and body mass were considered and 13 polymorphic microsatellite loci were analysed to quantify neutral genetic variation. Calculations of PST were based on Markov‐Chain Monte Carlo Bayesian estimates of phenotypic variances across and within populations. The robustness of the conclusions of the PSTFST comparison was evaluated by varying the proportion of variation due to additive genetic effects within and across populations. Our results suggest that body mass is under directional selection, whereas the divergence in other traits does not differ from neutral expectations. These findings suggest candidate traits for considering gene‐based studies of local adaptation. The recognition of locally adapted populations may be of value in the conservation of this declining species.  相似文献   

5.
Divergent natural selection is often thought to be the principal factor driving phenotypic differentiation between populations. We studied two ecotypes of the aquatic isopod Asellus aquaticus which have diverged in parallel in several Swedish lakes. In these lakes, isopods from reed belts along the shores colonized new stonewort stands in the centre of the lakes and rapid phenotypic changes in size and pigmentation followed after colonization. We investigated if selection was likely to be responsible for these observed phenotypic changes using indirect inferences of selection (FSTQST analysis). Average QST for seven quantitative traits were higher than the average FST between ecotypes for putatively neutral markers (AFLPs). This suggests that divergent natural selection has played an important role during this rapid diversification. In contrast, the average QST between the different reed ecotype populations was not significantly different from the mean FST. Genetic drift could therefore not be excluded as an explanation for the minor differences between allopatric populations inhabiting the same source habitat. We complemented this traditional FSTQST approach by comparing the FST distributions across all loci (n = 67–71) with the QST for each of the seven traits. This analysis revealed that pigmentation traits had diverged to a greater extent and at higher evolutionary rates than size‐related morphological traits. In conclusion, this extended and detailed type of FSTQST analysis provides a powerful method to infer adaptive phenotypic divergence between populations. However, indirect inferences about the operation of divergent selection should be analyzed on a per‐trait basis and complemented with detailed ecological information.  相似文献   

6.
This study revealed between‐lake genetic structuring between Coregonus lavaretus collected from the only two native populations of this species in Scotland, U.K. (Lochs Eck and Lomond) evidenced by the existence of private alleles (12 in Lomond and four in Eck) and significant genetic differentiation (FST = 0·056) across 10 microsatellite markers. Juvenile C. lavaretus originating from eggs collected from the two lakes and reared in a common‐garden experiment showed clear phenotypic differences in trophic morphology (i.e. head and body shape) between these populations indicating that these characteristics were, at least partly, inherited. Microsatellite analysis of adults collected from different geographic regions within Loch Lomond revealed detectable and statistically significant but relatively weak genetic structuring (FST = 0·001–0·024) and evidence of private alleles related to the basin structure of the lake. Within‐lake genetic divergence patterns suggest three possibilities for this observed pattern: (1) differential selection pressures causing divergence into separate gene pools, (2) a collapse of two formerly divergent gene pools and (3) a stable state maintained by balancing selection forces resulting from spatial variation in selection and lake heterogeneity. Small estimates of effective population sizes for the populations in both lakes suggest that the capacity of both populations to adapt to future environmental change may be limited.  相似文献   

7.
Lin J  Quinn TP  Hilborn R  Hauser L 《Heredity》2008,101(4):341-350
A long-standing goal of evolutionary biology is to understand the factors that drive population divergence, local adaptation and speciation. In particular, the effect of selection against dispersers on gene flow and local adaptation has attracted interest, although empirical data on phenotypic characters of dispersers are scarce. Here, we used genetic and phenotypic data from beach and creek ecotypes of sockeye salmon (Oncorhynchus nerka) in Little Togiak Lake, Alaska, to examine the relationship between gene flow and phenotypic and genetic differentiation. Despite close geographic proximity, both genetic and phenotypic differentiation between beach and creek fish was high and significant in all sampling years, with beach males having deeper bodies than creek males. Strays, or fish that did not return to their natal sites to spawn as determined by genetic assignment, tended to morphologically resemble the fish in the population that they joined. Male strays from beaches to creeks were shallower bodied than other beach fish, and male strays from creeks to beaches were deeper bodied than other creek males. Our results indicated that selection against strays may be moderated by the strays' phenotypic similarity to individuals in the recipient populations, but comparison of assignment results with long-term estimates of gene flow from F(ST) still suggested that strays had low reproductive success.  相似文献   

8.
The evidence for adaptive phenotypic differentiation in mobile marine species remains scarce, partly due to the difficulty of obtaining quantitative genetic data to demonstrate the genetic basis of the observed phenotypic differentiation. Using a combination of phenotypic and molecular genetic approaches, we elucidated the relative roles of natural selection and genetic drift in explaining lateral plate number differentiation in threespine sticklebacks (Gasterosteus aculeatus) across the entire Baltic Sea basin (approximately 392 000 km2). We found that phenotypic differentiation (PST = 0.213) in plate number exceeded that in neutral markers (FST = 0.008), suggesting an adaptive basis for the observed differentiation. Because a close correspondence was found between plate phenotype and genotype at a quantitative trait loci (QTL; STN381) tightly linked to the gene (Ectodysplasin) underlying plate variation, the evidence for adaptive differentiation was confirmed by comparison of FST at the QTL (FSTQ = 0.089) with FST at neutral marker loci. Hence, the results provide a comprehensive demonstration of adaptive phenotypic differentiation in a high‐gene‐flow marine environment with direct, rather than inferred, verification for the genetic basis of this differentiation. In general, the results illustrate the utility of PSTFSTFSTQ comparisons in uncovering footprints of natural selection and evolution and add to the growing evidence for adaptive genetic differentiation in high‐gene‐flow marine environments, including that of the relatively young Baltic Sea.  相似文献   

9.
Despite the enormous advances in genetics, links between phenotypes and genotypes have been made for only a few nonmodel organisms. However, such links can be essential to understand mechanisms of ecological speciation. The Costa Rican endemic Mangrove Warbler subspecies provides an excellent subject to study differentiation with gene flow, as it is distributed along a strong precipitation gradient on the Pacific coast with no strong geographic barriers to isolate populations. Mangrove Warbler populations could be subject to divergent selection driven by precipitation, which influences soil salinity levels, which in turn influences forest structure and food resources. We used single nucleotide polymorphisms (SNPs) and morphological traits to examine the balance between neutral genetic and phenotypic divergence to determine whether selection has acted on traits and genes with functions related to specific environmental variables. We present evidence showing: (a) associations between environmental variables and SNPs, identifying candidate genes related to bill morphology (BMP) and osmoregulation, (b) absence of population genetic structure in neutrally evolving markers, (c) divergence in bill size across the precipitation gradient, and (d) strong phenotypic differentiation (PST) which largely exceeds neutral genetic differentiation (FST) in bill size. Our results indicate an important role for salinity, forest structure, and resource availability in maintaining phenotypic divergence of Mangrove Warblers through natural selection. Our findings add to the growing body of literature identifying the processes involved in phenotypic differentiation along environmental gradients in the face of gene flow.  相似文献   

10.
Microsatellite DNA variation was used to assess the outcome of stocking Atlantic salmon Salmo salar and migratory trout Salmo trutta in River Sävarå, N Sweden. No information on pre‐stocking genetic composition of S. salar and S. trutta in River Sävarå was available. In 2 year‐classes of S. salar smolt, microsatellite data indicated that post‐stocking genetic composition differed markedly (FST= 0·048) from the main donor strain, Byskeälven S. salar, and from other Gulf of Bothnia S. salar stocks (FST 0·047 and 0·132). The STRUCTURE programme failed to detect any substructuring within Sävarå salmon. It was concluded that only minor introgression estimated to a proportion of 0·11 (95% CI 0·07–0·16) has occurred in S. salar. Salmo trutta showed overall low differentiation among populations with maximum FST of 0·03 making analysis more cumbersome than in S. salar. Still, the SävaråS. trutta deviated significantly from potential donor populations, and STRUCTURE software supported that majority of trout in Sävarå formed a distinct genetic population. Admixture was more extensive in S. trutta and estimated to 0·17 (95% CI 0·10–0·25).  相似文献   

11.
Archival scales from 603 sockeye salmon (Oncorhynchus nerka), sampled from May to July 1924 in the lower Columbia River, were analysed for genetic variability at 12 microsatellite loci and compared to 17 present‐day O. nerka populations—exhibiting either anadromous (sockeye salmon) or nonanadromous (kokanee) life histories—from throughout the Columbia River Basin, including areas upstream of impassable dams built subsequent to 1924. Statistical analyses identified four major genetic assemblages of sockeye salmon in the 1924 samples. Two of these putative historical groupings were found to be genetically similar to extant evolutionarily significant units (ESUs) in the Okanogan and Wenatchee Rivers (pairwise FST = 0.004 and 0.002, respectively), and assignment tests were able to allocate 77% of the fish in these two historical groupings to the contemporary Okanogan River and Lake Wenatchee ESUs. A third historical genetic grouping was most closely aligned with contemporary sockeye salmon in Redfish Lake, Idaho, although the association was less robust (pairwise FST = 0.060). However, a fourth genetic grouping did not appear to be related to any contemporary sockeye salmon or kokanee population, assigned poorly to the O. nerka baseline, and had distinctive early return migration timing, suggesting that this group represents a historical ESU originating in headwater lakes in British Columbia that was probably extirpated sometime after 1924. The lack of a contemporary O. nerka population possessing the genetic legacy of this extinct ESU indicates that efforts to reestablish early‐migrating sockeye salmon to the headwater lakes region of the Columbia River will be difficult.  相似文献   

12.
Adaptation to local environmental conditions and the range dynamics of populations can influence evolutionary divergence along environmental gradients. Thus, it is important to investigate patterns of both phenotypic and genetic variations among populations to reveal the respective roles of these two types of factors in driving population differentiation. Here, we test for evidence of phenotypic and genetic structure across populations of a passerine bird (Zosterops borbonicus) distributed along a steep elevational gradient on the island of Réunion. Using 11 microsatellite loci screened in 401 individuals from 18 localities distributed along the gradient, we found that genetic differentiation occurred at two spatial levels: (i) between two main population groups corresponding to highland and lowland areas, respectively, and (ii) within each of these two groups. In contrast, several morphological traits varied gradually along the gradient. Comparison of neutral genetic differentiation (FST) and phenotypic differentiation (PST) showed that PST largely exceeds FST at several morphological traits, which is consistent with a role for local adaptation in driving morphological divergence along the gradient. Overall, our results revealed an area of secondary contact midway up the gradient between two major, cryptic, population groups likely diverged in allopatry. Remarkably, local adaptation has shaped phenotypic differentiation irrespective of population history, resulting in different patterns of variation along the elevational gradient. Our findings underscore the importance of understanding both historical and selective factors when trying to explain variation along environmental gradients.  相似文献   

13.
Morphometric differentiation among freshwater fish populations is a commonplace occurrence, although the underlying causes for this divergence often remain elusive. We analysed the degree and patterns of morphological differentiation among nine freshwater three‐spined stickleback (Gasterosteus aculeatus) populations inhabiting isolated karst rivers of the Adriatic Sea basin, to characterise the phenotypic diversity and differentiation in these populations. The analyses revealed marked and significant morphometric differentiation – especially in traits related to predator defence amongst most populations – even among those located within close geographic proximity in the same catchment system. Accordingly, the degree of morphometric and neutral genetic differentiation, as assessed from variability in 15 microsatellite loci from a parallel study, were uncorrelated across the populations. However, PST/FST comparisons revealed that the degree of phenotypic differentiation (PST) among populations exceeded that to be expected from genetic drift alone, suggesting a possible adaptive basis for the observed differentiation. In fact, avian predation pressure and several physiochemical environmental variables were identified as the main putative drivers of the observed differentiation, particularly in the dorsal spines, ascending process and lateral plates. Hence, the high degree of morphometric differentiation among Adriatic three‐spined stickleback populations appears to reflect adaptation to local ecological conditions. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 219–240.  相似文献   

14.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

15.
Foreword     
Allozyme variation was characterised by starch gel electrophoresis at 23 enzyme coding loci and one regulatory locus in Atlantic salmon from 53 rivers in Eastern Canada, encompassing the majority of the species' North American range. Variation among rivers was highly heterogeneous and eight of the 15 polymorphisms showed regionally restricted distributions. Nearest neighbour joining (NJ) analysis and multi‐dimensional scaling suggest six distinct regional groups; Labrador/Ungava, Gulf of Saint Lawrence, Newfoundland (excluding Gulf rivers), the Atlantic shore/Southern Uplands of Nova Scotia, the inner Bay of Fundy, and the outer Bay of Fundy. Approximately 25% of observed genetic variation was distributed among these regions with a weak though significant overall correlation of genetic and geographic distance (Mantel Test, r = 0·255, P = 0·005). Collectively, the rivers showed consistent divergence from European populations with strong bootstrap support for the two clusters across loci in the NJ analysis. Mean heterozygosity was 0·061 for both continental groups, but the European population showed more than twice the variation among populations. FST values were 0·076 and 0·176 for North America and Europe, respectively, with an overall FST of 0·330.  相似文献   

16.
Regions of the genome displaying elevated differentiation (genomic islands of divergence) are thought to play an important role in local adaptation, especially in populations experiencing high gene flow. However, the characteristics of these islands as well as the functional significance of genes located within them remain largely unknown. Here, we used data from thousands of SNPs aligned to a linkage map to investigate genomic islands of divergence in three ecotypes of sockeye salmon (Oncorhynchus nerka) from a single drainage in southwestern Alaska. We found ten islands displaying high differentiation among ecotypes. Conversely, neutral structure observed throughout the rest of the genome was low and not partitioned by ecotype. One island on linkage group So13 was particularly large and contained six SNPs with FST > 0.14 (average FST of neutral SNPs = 0.01). Functional annotation revealed that the peak of this island contained a nonsynonymous mutation in a gene involved in growth in other species (TULP4). The islands that we discovered were relatively small (80–402 Kb), loci found in islands did not show reduced levels of diversity, and loci in islands displayed slightly elevated linkage disequilibrium. These attributes suggest that the islands discovered here were likely generated by divergence hitchhiking; however, we cannot rule out the possibility that other mechanisms may have produced them. Our results suggest that islands of divergence serve an important role in local adaptation with gene flow and represent a significant advance towards understanding the genetic basis of ecotypic differentiation.  相似文献   

17.
The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long‐term selection in seasonally dry ecosystems. In this study, we used QSTFST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.  相似文献   

18.
Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 °C increase in average summer water temperature over 100 years (1981–2000 to 2081–2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 °C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, ≥90% of salmon encountered temperatures exceeding population‐specific thermal optima for maximum aerobic scope; Topt=16.3 °C for Gates Creek and Topt=14.5 °C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations≥50% of Weaver Creek fish exceeded temperature thresholds associated with 0–60% of maximum aerobic scope). Potential for adaptation via directional selection on run‐timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15–31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0–17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population‐specific differences in behaviour and physiological constraints when forecasting impacts of climate change on migratory survival of aquatic species.  相似文献   

19.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

20.
Comparisons between putatively neutral genetic differentiation amongst populations, FST, and quantitative genetic variation, QST, are increasingly being used to test for natural selection. However, we find that approximately half of the comparisons that use only data from wild populations confound phenotypic and genetic variation. We urge the use of a clear distinction between narrow‐sense QST, which can be meaningfully compared with FST, and phenotypic divergence measured between populations, PST, which is inadequate for comparisons in the wild. We also point out that an unbiased estimate of QST can be found using the so‐called ‘animal model’ of quantitative genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号