首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ‐free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short‐chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top‐down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino‐acid metabolism, methylamines and SCFAs. The novel application of hierarchical‐principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top‐down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics.  相似文献   

2.
3.
4.
Mice with diet‐induced obesity were fed with Lactobacillus rhamnosus GG (LGG) suspended in saline or saline alone (control mice). Pulmonary mRNA expression of IFN‐γ; IFN‐α receptor 1; CD247 antigen; killer cell lectin‐like receptor subfamily K, member 1; TNF‐α; IL‐12 receptor β1 and IL‐2 receptor β, and the proportion of Lactobacillales in feces were significantly greater in the LGG group than in the control mice (P < 0.05 and P < 0.01, respectively). These results suggest that LGG alters the respiratory immunity of obese subjects through having a potent impact on intestinal immunity.  相似文献   

5.
6.
Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle‐feeding ciliates, surface‐feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long‐term negative effect on bacterial biomass both in the open‐water phase and biofilm. Bacteriophages had only a minor long‐term effect on bacterial biomass in open‐water and biofilm phases. However, separate short‐term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open‐water phase within the first 24 h. Thereafter, the bacteria evolve phage‐resistance that largely prevents top‐down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open‐water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top‐down regulation of bacteria.  相似文献   

7.
Ecological restorations are predicted to increase in species diversity over time until they reach reference levels. However, chronosequence studies in grasslands often show that diversity peaks after the first few years and then declines over time as grasses become more dominant. We addressed whether bison grazing and seed additions could prevent this decline in diversity. Exclosures that prevented bison grazing were compared with grazed plots over 4 years, and seed additions were conducted inside and outside exclosures to test for seed and microsite limitations. A previous study conducted 4‐months post seeding found that local species richness was primarily seed limited, but that grazing could sometimes increase seedling emergence. Here, we tested whether increased seedling emergence led to longer‐term increases in the species diversity of the plant community. We found that the seed addition effect grew smaller and the grazing effect grew stronger over time, and that seed additions affected the abundance of added species only when plots were grazed. Grazed plots had higher species diversity and lower biomass and litter buildup compared to non‐grazed plots. Our results suggest that moderate grazing by bison or management that mimics grazing can maintain diversity in grass‐dominated situations. Our results also emphasize the need to follow seed additions over several years to assess correctly whether seed limitation exists.  相似文献   

8.
  1. Although considered a key functional trait, little is known about how zooplankton feeding mode affects top‐down regulation of phytoplankton communities. Indeed, copepods are expected to promote the dominance of toxic phytoplankton by selective removal of their edible competitors; however, empirical evidence comparing the effect among calanoid and cyclopoid copepods is lacking.
  2. We compared the top‐down effects of two copepods with contrasting feeding modes—the calanoid Notodiaptomus iheringi (current feeder) and the cyclopoid Thermocyclops decipiens (ambush feeder) — on the relative and absolute biomass of the filamentous cyanobacterium Raphidiopsis raciborskii co‐cultured with the nutritious eukaryotic phytoplankton Cryptomonas obovata in a week‐long laboratory assay.
  3. The current feeder had a stronger top‐down effect on the biomass of both prey throughout the experiment, with mass‐specific clearance rates 3–5× higher than ambush feeder. By the end of the experiment, the current feeder significantly reduced cyanobacteria biomass compared to controls while the ambush feeder did not. During the week‐long experiment, the current feeder switched from grazing on edible prey to cyanobacteria as the former became less abundant.
  4. Contrary to expectation, neither of the copepod species promoted cyanobacterial dominance by the end of the experiment. This is because both grazers, but especially the current feeder, initially increased but subsequently decreased the relative contribution of cyanobacteria to total phytoplankton biomass. Moreover, both copepods decreased the length of cyanobacteria filaments by c. 70%
  5. Current feeders can switch from edible prey to cyanobacteria when the abundance of shortened filaments surpasses the abundance of edible prey. While top‐down regulation of phytoplankton can be stronger for current feeding copepods, ambush feeding copepods can have a significant role during blooms by shortening cyanobacterial filaments. Hence, the broader role of contrasting copepod feeding traits on phytoplankton communities merits further study.
  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   

10.
11.
The anti‐infectious activity of synbiotics against methicillin‐resistant Staphylococcus aureus (MRSA) infection was evaluated using a novel lethal mouse model. Groups of 12 mice treated with multiple antibiotics were infected orally with a clinical isolate of MRSA at an inoculum of 108 CFU on day 7 after starting the antibiotics. A dose of 400 mg/kg 5‐fluorouracil (5‐FU) was injected intraperitoneally on day 7 after the infection. A dose of 108 CFU Bifidobacterium breve strain Yakult and 10 mg of galactooligosaccharides (GOS) were given orally to mice daily with the antibiotic treatment until day 28. The intestinal population levels of MRSA in the mice on multiple antibiotics were maintained stably at 108 CFU/g of intestinal contents after oral MRSA infection and the subsequent 5‐FU treatment killed all the mice in the group within 14 days. B. breve administration saved most of the mice, but the synbiotic treatment saved all of the mice from lethal MRSA infection. The synbiotic treatment was effective for the treatment of intestinal infection caused by four MRSA strains with different toxin productions. There was a large difference among the six Bifidobacteria strains that were naturally resistant to the antibacterial drugs used. B. breve in combination with GOS is demonstrated to have valuable preventive and curative effects against even fatal MRSA infections.  相似文献   

12.
Binge methamphetamine (MA) users have higher MA consumption, relapse rates and depression‐like symptoms during early periods of withdrawal, compared with non‐binge users. The impact of varying durations of MA abstinence on depression‐like symptoms and on subsequent MA intake was examined in mice genetically prone to binge‐level MA consumption. Binge‐level MA intake was induced using a multiple‐bottle choice procedure in which mice were offered one water drinking tube and three tubes containing increasing concentrations of MA in water, or four water tubes (control group). In two studies, depression‐like symptoms were measured using a tail‐suspension test and a subsequent forced‐swim test, after forced abstinence of 6 and 30 hours from a 28‐day course of chronic MA intake. An additional study measured the same depression‐like symptoms, as well as MA intake, after prolonged abstinence of 1 and 2 weeks. MA high drinking mice and one of their progenitor strains DBA/2J escalated their MA intake with increasing MA concentration; however, MA high drinking mice consumed almost twice as much MA as DBA/2J mice. Depression‐like symptoms were significantly higher early after MA access was withdrawn, compared to levels in drug‐naïve controls, with more robust effects of MA withdrawal observed in MA high drinking than DBA/2J mice. When depression‐like symptoms were examined after 1 or 2 weeks of forced abstinence in MA high drinking mice, depression‐like symptoms dissipated, and subsequent MA intake was high. The MA high drinking genetic mouse model has strong face validity for human binge MA use and behavioral sequelae associated with abstinence.  相似文献   

13.
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD). Accumulated damaged mitochondria, which are associated with impaired mitophagy, contribute to neurodegeneration in AD. We show levels of Disrupted‐in‐schizophrenia‐1 (DISC1), which is genetically associated with psychiatric disorders and AD, decrease in the brains of AD patients and transgenic model mice and in Aβ‐treated cultured cells. Disrupted‐in‐schizophrenia‐1 contains a canonical LC3‐interacting region (LIR) motif (210FSFI213), through which DISC1 directly binds to LC3‐I/II. Overexpression of DISC1 enhances mitophagy through its binding to LC3, whereas knocking‐down of DISC1 blocks Aβ‐induced mitophagy. We further observe overexpression of DISC1, but not its mutant (muFSFI) which abolishes the interaction of DISC1 with LC3, rescues Aβ‐induced mitochondrial dysfunction, loss of spines, suppressed long‐term potentiation (LTP). Overexpression of DISC1 via adeno‐associated virus (serotype 8, AAV8) in the hippocampus of 8‐month‐old APP/PS1 transgenic mice for 4 months rescues cognitive deficits, synaptic loss, and Aβ plaque accumulation, in a way dependent on the interaction of DISC1 with LC3. These results indicate that DISC1 is a novel mitophagy receptor, which protects synaptic plasticity from Aβ accumulation‐induced toxicity through promoting mitophagy.  相似文献   

14.
Spontaneous late‐onset Alzheimer's disease (LOAD) accounts for more than 95% of all human AD. As mice do not normally develop AD and as understanding on molecular processes leading to spontaneous LOAD has been insufficient to successfully model LOAD in mouse, no mouse model for LOAD has been available. Existing mouse AD models are all early‐onset AD (EOAD) models that rely on forcible expression of AD‐associated protein(s), which may not recapitulate prerequisites for spontaneous LOAD. This limitation in AD modeling may contribute to the high failure rate of AD drugs in clinical trials. In this study, we hypothesized that genomic instability facilitates development of LOAD and tested two genomic instability mice models in the brain pathology at the old age. Shugoshin‐1 (Sgo1) haploinsufficient (?) mice, a model of chromosome instability (CIN) with chromosomal and centrosomal cohesinopathy, spontaneously exhibited a major feature of AD pathology; amyloid beta accumulation that colocalized with phosphorylated Tau, beta‐secretase 1 (BACE), and mitotic marker phospho‐Histone H3 (p‐H3) in the brain. Another CIN model, spindle checkpoint‐defective BubR1?/+ haploinsufficient mice, did not exhibit the pathology at the same age, suggesting the prolonged mitosis‐origin of the AD pathology. RNA‐seq identified ten differentially expressed genes, among which seven genes have indicated association with AD pathology or neuronal functions (e.g., ARC, EBF3). Thus, the model represents a novel model that recapitulates spontaneous LOAD pathology in mouse. The Sgo1?/+ mouse may serve as a novel tool for investigating mechanisms of spontaneous progression of LOAD pathology, for early diagnosis markers, and for drug development.  相似文献   

15.
We evaluated the effects of ibuprofen on cytokine production and mortality in a mouse model of septic shock induced by Vibrio vulnificus, strain Chi Mei Vv05191. Ibuprofen (50 mg/kg) or saline (control) was given to female BALB/cByJ mice for three consecutive days before exposure to the pathogen. For cytokine production, serum and peritoneal fluid were assayed for IL‐1β, IL‐6, TNF‐α, and MIP‐2 by ELISA at 3, 6, and 9 hr after intraperitoneal infection of the organism. At 6 hr after infection, serum and peritoneal fluid levels of IL‐6, TNF‐α, and MIP‐2 were significantly higher in the ibuprofen group. For mortality determination, 73 mice (37 ibuprofen, 36 control) were injected intramuscularly with V. vulnificus. Kaplan–Meier survival curves were analyzed. Survival was significantly decreased by ibuprofen only for the lowest inoculum (25 CFU) of V. vulnificus. Administration of ibuprofen before infection may augment the pathogenesis of V. vulnificus by stimulating cytokine production.  相似文献   

16.
To generate a mouse model of spontaneous epidermal depigmentation, parental h3TA2 mice, expressing both a human‐derived, tyrosinase‐reactive T‐cell receptor on T cells and the matching HLA‐A2 transgene, were crossed to keratin 14‐promoter driven, stem cell factor transgenic (K14‐SCF) mice with intra‐epidermal melanocytes. In resulting Vitesse mice, spontaneous skin depigmentation precedes symmetrical and sharply demarcated patches of graying hair. Whereas the SCF transgene alone dictates a greater retinoic acid receptor‐related orphan receptor gamma (RORγt)+ T‐cell compartment, these cells displayed markedly increased IL‐17 expression within Vitesse mice. Similar to patient skin, regulatory T cells were less abundant compared with K14‐SCF mice, with the exception of gradually appearing patches of repigmenting skin. The subtle repigmentation observed likely reflects resilient melanocytes that coexist with skin‐infiltrating, melanocyte‐reactive T cells. Similar repigmenting lesions were found in a different TCR transgenic model of vitiligo developed on an SCF transgenic background, supporting a role for SCF in repigmentation.  相似文献   

17.
Dietary agents are receiving much attention for the chemoprevention of cancer. While curcumin is known to influence several pathways and affect tumor growth in vivo, carnitin and its congeners play a variety of important metabolic functions: are involved in the oxydation of long‐chain fatty acids, regulate acyl‐CoA levels and influence protein activity and stability by modifying the extent of protein acetylation. In this study we evaluated the efficacy of carnitines in the prevention of cancer development using the 1,2,‐dimethylhydrazine (DMH)‐induced colon carcinogenesis model. We also assessed whether their combination was able to give rise to increased protection from cancer development. Mice treated with DMH were dosed orally with curcumin and/or carnitine and acylcarnitines for 20 weeks. At the end of the treatment colon samples were collected, and scored for multiple ACF and adenomas. We observed that carnitine and acyl‐carnitines had same, if not higher, efficacy than curcumin alone in inhibiting the formation of neoplastic lesions induced by DMH treatment. Interestingly, the combination of curcumin and acetyl‐L ‐carnitine was able to fully inhibit the development of advanced adenoma lesions. Our data unveil the antitumor effects of carnitines and warrant additional studies to further support the adoption of carnitines as cancer chemopreventative agents. J. Cell. Biochem. 114: 1665–1673, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Individuals with autism constitute a variable population whose members are spread along the autism spectrum. Subpopulations within that spectrum exhibit other conditions, such as anxiety, intellectual disabilities, hyperactivity and epilepsy, with different severities and co‐occurrences. Among the genes associated with the increased risk for autism is the methylenetetrahydrofolate‐reductase (MTHFR) 677C>T polymorphism, which impairs one‐carbon (C1) metabolic pathway efficiency. The frequency of the MTHFR677TT homozygote is markedly higher among autism patients and their mothers than in the general population. Here, we report on the Mthfr heterozygous knockout (KO) mouse as a rodent model of autism that shows the contributions of maternal and offspring genotypes to the development of autistic‐like behaviors. Maternal Mthfr‐deficiency was associated with developmental delays in morphogenic features and sensory‐motor reflexes in offspring. In the adult male mouse, behaviors representing core autism symptoms, such as repetitive behavior and restricted interest, were affected by maternal genotype while social behaviors were affected by both maternal and offspring genotypes. In females and males, behaviors associated with autism such as memory impairment, social aggression and anxiety were affected by both the maternal and offspring Mthfr genotypes, with sex‐dependent differences. Mthfr‐deficient male mice with observable impacts on behavior presented a particular laminar disturbance in parvalbumin interneuron density and innervation in superficial and deep layers of the cingulate cortex. This mouse model of autism will help to elucidate the molecular mechanisms that predispose a significant subgroup of autistic patients to abnormal development and to distinguish between the in‐utero and autonomous factors involved in autism.  相似文献   

19.
Aquaporin‐1 (AQP1) is a proangiogenic water channel protein promoting endothelial cell migration. We previously reported that AQP1 silencing by RNA interference reduces angiogenesis‐dependent primary tumour growth in a mouse model of melanoma. In this study, we tested the hypothesis that AQP1 inhibition also affects animal survival and lung nodule formation. Melanoma was induced by injecting B16F10 cells into the back of C57BL6J mice. Intratumoural injection of AQP1 siRNA and CTRL siRNA was performed 10 days after tumour cell implantation. Lung nodule formation was analysed after the death of the mice. Western blot was used to quantify HIF‐1α, caspase‐3 (CASP3) and metalloproteinase‐2 (MMP2) protein levels. We found that AQP1 knock‐down (KD) strongly inhibited metastatic lung nodule formation. Moreover, AQP1 siRNA‐treated mice showed a twofold survival advantage compared to mice receiving CTRL siRNAs. The reduced AQP1‐dependent tumour angiogenesis caused a hypoxic condition, evaluated by HIF‐1α significant increase, in turn causing an increased level of apoptosis in AQP1 KD tumours, assessed by CASP3 quantification and DNA fragmentation. Importantly, a decreased level of MMP2 after AQP1 KD indicated a decreased activity against extracellular matrix associated with reduced vascularization and metastatic formation. In conclusion, these findings highlight an additional role for AQP1 as an important determinant of tumour dissemination by facilitating tumour cell extravasation and metastatic formation. This study adds knowledge on the role played by AQP1 in tumour biology and supports the view of AQP1 as a potential drug target for cancer therapy.  相似文献   

20.
The computational identification of oncogenic lesions is still a key open problem in cancer biology. Although several methods have been proposed, they fail to model how such events are mediated by the network of molecular interactions in the cell. In this paper, we introduce a systems biology approach, based on the analysis of molecular interactions that become dysregulated in specific tumor phenotypes. Such a strategy provides important insights into tumorigenesis, effectively extending and complementing existing methods. Furthermore, we show that the same approach is highly effective in identifying the targets of molecular perturbations in a human cellular context, a task virtually unaddressed by existing computational methods. To identify interactions that are dysregulated in three distinct non‐Hodgkin's lymphomas and in samples perturbed with CD40 ligand, we use the B‐cell interactome (BCI), a genome‐wide compendium of human B‐cell molecular interactions, in combination with a large set of microarray expression profiles. The method consistently ranked the known gene in the top 20 (0.3%), outperforming conventional approaches in 3 of 4 cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号