首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Precaudal vertebral counts were used to distinguish between 237 morphologically similar Carcharhinus limbatus and Carcharhinus tilstoni and were congruent with differences in reproductive ecology between the species. In addition to differing lengths at maturity and adult body size, the two species had asynchronous parturition, were born at different sizes and the relative frequencies of neonates differed in two coastal nursery areas. Despite evidence that hybridization can occur, these differences suggest the species are largely reproductively isolated.  相似文献   

2.
Embryos of the viviparous dwarf ornate wobbegong shark (Orectolobus ornatus) develop without a placenta, unattached to the uterine wall of their mother. Here, we present the first light microscopy study of the uterus of O. ornatus throughout pregnancy. At the beginning of pregnancy, the uterine luminal epithelium and underlying connective tissue become folded to form uterine ridges. By mid to late pregnancy, the luminal surface is extensively folded and long luminal uterine villi are abundant. Compared to the nonpregnant uterus, uterine vasculature is increased during pregnancy. Additionally, as pregnancy progresses the uterine epithelium is attenuated so that there is minimal uterine tissue separating large maternal blood vessels from the fluid that surrounds developing embryos. We conclude that the uterus of O. ornatus undergoes an extensive morphological transformation during pregnancy. These uterine modifications likely support developing embryos via embryonic respiratory gas exchange, waste removal, water balance, and mineral transfer.  相似文献   

3.
This study is the first study to describe blood cell morphology, using light microscopy, for three species of wild‐caught wobbegong shark. Blood cell morphology was similar to that described previously in fish. Wobbegong sharks possess erythrocytes, at least three different morphological types of thrombocytes, lymphocytes, eosinophils, neutrophils, granuloblasts and monocytes. No basophils were observed in this study. Similarities and differences in morphological appearance of wobbegong shark blood cells compared to Chondrichthyes, teleosts and mammalian blood cells are discussed. Zoo Biol 0:1–10, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

4.
The reproductive behavior of two wrasses,Pseudolabrus eoethinus (Richardson, 1846) andP. sieboldi Mabuchi & Nakabo, 1997, was studied on a rocky coast in Shikoku, Japan, where the two species occur sympatrically. In the study area, individual males of each species established mating territories within which pair spawnings occurred. Pair spawnings were observed only between conspecifics, indicating that the two coexisting species were reproductively isolated. Both species usually spawned during the afternoon in early winter and had similar reproductive behavior. Although habitat, temporal and behavioral isolation mechanisms were not apparent, reproductive isolation seemed to occur via premating isolation through visual recognition of conspecific mates because the two species differed in body size and coloration. On one occasion a maleP. sieboldi was observed to perform streaking behavior to join a spawning pair ofP. eoethinus. Thus, postmating isolation between the two species is also discussed.  相似文献   

5.
Neonatal predation in multispecies aquarium exhibits can prevent detection of captive breeding by wobbegong sharks. We used ultrasonography and isolation strategies to prevent neonatal predation and maximize survival/growth of the dwarf ornate wobbegong (Orectolobus ornatus de Vis, 1883). We captured seven free‐living wobbegongs (two males and five females) and subjected each animal to a health assessment which led to the euthanasia of one female with a retained hook. Ultrasonography showed that females were pregnant, one was preovulatory, and one was in a resting phase. Two females (one pregnant) and one male were placed in isolation in each of two tanks. In October 2006, 25 neonates were born overnight with the two litters placed into separate neonate tanks. Over the ~6.5‐month monitoring period, four neonates with reduced body condition died without premonitory signs resulting in a 63.0% annual survival rate. Finite growth rates did not differ between sexes or litters and averaged (±SE) 12.2 (1.5) cm/year and 156.4 (26.4) g/year. At the cessation of monitoring, total length had increased by ~30%, whereas total weight had almost doubled with neonatal body condition in line with free‐living wobbegongs. Our efficacious, six‐step manipulative, the approach should be applicable with all wobbegongs given their reproductive similarities, but we recommend that efforts focus on the dwarf ornate, tasselled and Japanese wobbegongs because all are small in size and have bred in aquaria. Ultimately, this approach should produce self‐sustaining aquarium populations, place less reliance on the wild acquisition and provide animals for other aquaria, population restocking, or scientific research.  相似文献   

6.
External male reproductive structures have received considerable attention as a cause of reproductive isolation (RI), because the morphology of these structures often evolves rapidly between populations. This rapid evolution presents the potential for mechanical incompatibilities with heterospecific female structures during mating and could thus prevent interbreeding between nascent species. Although such mechanical incompatibilities have received little empirical support as a common cause of RI, the potential for mismatch of reproductive structures to cause RI due to incompatible species‐specific tactile cues has not been tested. We tested the importance of mechanical and tactile incompatibilities in RI between Enallagma anna and E. carunculatum, two damselfly species that diverged within the past ~250,000 years and currently hybridize in a sympatric region. We quantified 19 prezygotic and postzygotic RI barriers using both naturally occurring and laboratory‐reared damselflies. We found incomplete mechanical isolation between the two pure species and between hybrid males and pure species females. Interestingly, in mating pairs for which mechanical isolation was incomplete, females showed greater resistance and refusal to mate with hybrid or heterospecific males compared to conspecific males. This observation suggests that tactile incompatibilities involving male reproductive structures can influence female mating decisions and form a strong barrier to gene flow in early stages of speciation.  相似文献   

7.
Two to 14 alleles were found to be segregating per locus (mean 5·2), with observed and expected heterozygosities ranging from 0·08 to 0·78 and 0·08 to 0·94, respectively. Cross-amplification of six of these microsatellite loci indicated that they are also polymorphic in three species of Carcharhiniformes and two species of Lamniformes. The newly developed primers reported here constitute a useful tool for genetic population analyses on Prionace glauca and, potentially, other related species.  相似文献   

8.
Abstract 1. The evolution of reproductive isolation between recently diverged or incipient species is a critical component of speciation and a major focus of speciation models. In phytophagous insects, host plant fidelity (the habit of mating and ovipositing on a single host species) can contribute to assortative mating and reproductive isolation between populations adapting to alternative hosts. The potential role of host plant fidelity in the evolution of reproductive isolation was examined in a pair of North American blue butterfly species, Lycaeides idas and L. melissa .
2. These species are morphologically distinct and populations of each species utilise different host plants; however they share 410 bp haplotypes of the mitochondrial cytochrome oxidase subunit I (COI) gene, indicating recent divergence.
3. Some populations using native hosts exhibited strong fidelity for their natal host plant over the hosts used by nearby populations. Because these butterflies mate on or near the host plant, the development of strong host fidelity may create reproductive isolation among populations on different hosts and restrict gene flow.
4. Tests of population differentiation using allozyme allele frequency data did not provide convincing evidence of restricted gene flow among populations. Based on morphological differences, observed ecological specialisation, and the sharing of genetic markers, these butterflies appear to be undergoing adaptive radiation driven at least partially by host shifts. Neutral genetic markers may fail to detect the effects of very recent host shifts in these populations due to gene flow and/or the recency of divergence and shared ancestral polymorphism.  相似文献   

9.
Here we present records of sharks obtained using baited remote underwater stereo-video systems (stereo-BRUVS) at two Brazilian oceanic islands. Fourteen of the 60 deployments recorded 19 sharks in Trindade Island. In Saint Peter and Saint Paul Archipelago (SPSPA), two pelagic and two demersal deployments recorded two and one shark, respectively, including the locally extinct Galapagos shark Carcharhinus galapagensis. Stereo-BRUVS should be considered as adjuncts to other non-invasive methods to monitor shark populations.  相似文献   

10.
11.
The process of speciation is key to the origins of biodiversity, and yet the Caenorhabditis nematode model system has contributed little to this topic. Genetic studies of speciation in the genus are now feasible, owing to crosses between the recently discovered Caenorhabditis sp. 9 and the well-known C. briggsae producing fertile F(1) hybrid females. We dissected patterns of postzygotic reproductive isolation between these species by crossing eight isogenic strains of C. briggsae reciprocally with six strains of C. sp. 9. We determined that overall patterns of reproductive isolation are robust across these genetic backgrounds. However, we also quantified significant heritable variation within each species for interspecific hybrid incompatibilities for total adult progeny, egg-to-adult viability, and the percentage of male progeny. This demonstrates that intraspecific variation for interspecific hybrid incompatibility occurs despite extensive, albeit incomplete, reproductive isolation. Therefore, this emerging general phenomenon of variable reproductive isolation is not restricted to highly interfertile, early-stage incipient species, but also applies to species in the latest stages of the speciation process. Furthermore, we confirm Haldane's rule and demonstrate strongly asymmetric parent-of-origin effects (Darwin's corollary) that consistently manifest more extremely when hermaphroditic C. briggsae serves as maternal parent. These findings highlight Caenorhabditis as an emerging system for understanding the genetics of general patterns of reproductive isolation.  相似文献   

12.
Mechanisms preventing interspecific pollination are important in closely related plant species, in particular when post-zygotic barriers are weak or absent. We investigated the role of floral odour in reproductive isolation between the two closely related species Silene latifolia and S. dioica. First, we tested whether floral odour composition and emission differed between the species. We found significant odour differences, but contrary to expectations, both species showed a rhythmic emission of the same compounds between day and night. Second, in a field experiment, odour of the two species was made more similar by applying phenylacetaldehyde to flowers. This manipulation led to higher pollen-analogue transfer between species, revealing that floral odour differences are important for maintaining reproductive isolation. We conclude that differences in single key compounds can reduce pollen transfer across species boundaries by pollinators and demonstrate that odour differences are an important component of premating floral isolation between closely related plant species.  相似文献   

13.
The taxonomic status of populations of rockhopper penguins (Eudyptes chrysocome) is still enigmatic. Northern populations differ from southern ones in breeding phenology, song characteristics and head ornaments used as mating signals. We conducted a molecular analysis using mitochondrial DNA sequencing to test if there is a gene flow barrier between northern (subtropical) populations and southern (subantarctic) populations in relation to the Subtropical Convergence, a major ecological boundary for marine organisms. Sequences of the control region and the ND2 gene were analysed in rockhopper penguins and in the macaroni penguin (Eudyptes chrysolophus), a closely related species. Genetic distances and phylogenetic analyses showed a clear split into three clades, two rockhopper clades and the macaroni penguin. Moreover, Theta(ST) and gene flow estimates also suggested genetic structuring within the northern rockhoppers. Our results add further support to the notion that the two rockhopper penguin taxa, often considered as two subspecies, can be recognized as two species E. chrysocome and E. moseleyi. The divergence in mating signals found between these two taxa seems to have occurred recently and relatively rapidly. Thus, the behavioural changes may have been enough to isolate these taxa without the need for morphological differentiation. The findings have important conservational implications, since E. moseleyi is far less abundant than E. chrysocome, but more populations may warrant an uplisting to endangered status if full species status should be recognized for more subpopulations.  相似文献   

14.
Orissa, on the east coast of India, is one of the three mass nesting sites in the world for olive ridley turtles (Lepidochelys olivacea). This population is currently under threat as a result of fishery-related mortality; more than 100 000 olive ridleys have been counted dead in the last 10 years in Orissa. In general, the globally distributed olive ridley turtle has received significantly less conservation attention than its congener, the Kemp's ridley turtle (L. kempi), because the latter is recognized as a distinct species consisting of a single endangered population. Our study of mitochondrial DNA haplotypes suggests that the ridley population on the east coast of India is panmictic, but distinct from all other populations including Sri Lanka. About 96% of the Indian population consisted of a distinct 'K' clade with haplotypes not found in any other population. Nested clade analysis and conventional analysis both supported range expansions and/or long-distance colonization from the Indian Ocean clades to other oceanic basins, which suggested that these are the ancestral source for contemporary global populations of olive ridley turtles. These data support the distinctiveness of the Indian Ocean ridleys, suggesting that conservation prioritization should be based on appropriate data and not solely on species designations.  相似文献   

15.
16.
17.
18.
A D Twyford  C A Kidner  R A Ennos 《Heredity》2014,112(4):382-390
Begonia is one of the ten largest plant genera, with over 1500 species. This high species richness may in part be explained by weak species cohesion, which has allowed speciation by divergence in allopatry. In this study, we investigate species cohesion in the widespread Central American Begonia heracleifolia and Begonia nelumbiifolia, by genotyping populations at microsatellite loci. We then test for post-zygotic reproductive barriers using experimental crosses, and assess whether sterility barriers are related to intraspecific changes in genome size, indicating major genome restructuring between isolated populations. Strong population substructure was found for B. heracleifolia (FST=0.364, FST=0.506) and B. nelumbiifolia (FST=0.277, FST=0.439), and Bayesian admixture analysis supports the division of most populations into discrete genetic clusters. Moderate levels of inferred selfing (B. heracleifolia s=0.40, B. nelumbiifolia s=0.62) and dispersal limitation are likely to have contributed to significant genetic differentiation (B. heracleifolia Jost''s D=0.274; B. nelumbiifolia D=0.294). Interpopulation crosses involving a divergent B. heracleifolia population with a genome size ∼10% larger than the species mean had a ∼20% reduction in pollen viability compared with other outcrosses, supporting reproductive isolation being polymorphic within the species. The population genetic data suggest that Begonia populations are only weakly connected by gene flow, allowing reproductive barriers to accumulate between the most isolated populations. This supports allopatric divergence in situ being the precursor of speciation in Begonia, and may also be a common speciation mechanism in other tropical herbaceous plant groups.  相似文献   

19.
Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator‐mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (–0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre‐ and postzygotic reproductive isolation between closely related species. It also suggests that pollinator‐mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.  相似文献   

20.
Accessory gland proteins (Acps) are part of the seminal fluid of male Drosophila flies. Some Acps have exceptionally high evolutionary rates and evolve under positive selection. Proper interactions between Acps and female reproductive molecules are essential for fertilization. These observations lead to suggestions that fast evolving Acps could be involved in speciation by promoting reproductive incompatibilities between emerging species. To test this hypothesis, we used population genetics data for three sibling species: D. mayaguana, D. parisiena and D. straubae. The latter two species are morphologically very similar and show only incipient reproductive isolation. This system allowed us to examine Acp evolution at different time frames with respect to speciation and reproductive isolation. Comparing data of 14 Acp loci with data obtained for other genomic regions, we found that some Acps show extraordinarily high levels of divergence between D. mayaguana and its two sister species D. parisiena and D. straubae. This divergence was likely driven by adaptive evolution at several loci. No fixed nucleotide differences were found between D. parisiena and D. straubae, however. Nevertheless, some Acp loci did show significant differentiation between these species associated with signs of positive selection; these loci may be involved in this early phase of the speciation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号