首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: To determine the effects of naturally derived probiotic strains individually or combination on a short‐term diet‐induced obesity model. Design and Methods: C57BL/6J mice (n = 50) were randomly divided into five groups, then fed a high‐fat high‐cholesterol diet (HFCD), HFCD and Lactobacillus plantarum KY1032 (PL, 1010cfu/day), HFCD and Lactobacillus curvatus HY7601 (CU, 1010cfu/day), HFCD and in combination with PL+CU (1010cfu/day), or a normal diet (ND) for 9 weeks. Results: PL and CU showed distinct and shared metabolic activity against a panel of 50 carbohydrates. Fat accumulation in adipose tissue and liver was significantly reduced by probiotic strains CU or PL+CU. Probiotic strains CU or PL+CU reduced cholesterol in plasma and liver, while PL+CL had a synergistic effect on hepatic triglycerides. Probiotic strains PL+CU combination was more effective for inhibiting gene expressions of various fatty acid synthesis enzymes in the liver, concomitant with decreases in fatty acid oxidation‐related enzyme activities and their gene expressions. Conclusions: Multi‐strain probiotics may prove more beneficial than single‐strain probiotics to combat fat accumulation and metabolic alterations in diet‐induced obesity.  相似文献   

2.
Gut microbiome–host metabolic interactions affect human health and can be modified by probiotic and prebiotic supplementation. Here, we have assessed the effects of consumption of a combination of probiotics (Lactobacillus paracasei or L. rhamnosus) and two galactosyl‐oligosaccharide prebiotics on the symbiotic microbiome–mammalian supersystem using integrative metabolic profiling and modeling of multiple compartments in germ‐free mice inoculated with a model of human baby microbiota. We have shown specific impacts of two prebiotics on the microbial populations of HBM mice when co‐administered with two probiotics. We observed an increase in the populations of Bifidobacterium longum and B. breve, and a reduction in Clostridium perfringens, which were more marked when combining prebiotics with L. rhamnosus. In turn, these microbial effects were associated with modulation of a range of host metabolic pathways observed via changes in lipid profiles, gluconeogenesis, and amino‐acid and methylamine metabolism associated to fermentation of carbohydrates by different bacterial strains. These results provide evidence for the potential use of prebiotics for beneficially modifying the gut microbial balance as well as host energy and lipid homeostasis.  相似文献   

3.
Probiotic and potential probiotic bacterial strains are routinely prescribed and used as supplementary therapy for a variety infectious diseases, including enteric disorders among a wide range of individuals. While there are an increasing number of studies defining the possible mechanisms of probiotic activity, a great deal remains unknown regarding the diverse modes of action attributed to these therapeutic agents. More precise information is required to support the appropriate application of probiotics. To address this objective, we selected two probiotics strains, Lactobacillus acidophilus MTCC-10307 (LA) and Bacillus clausii MTCC-8326 (BC) that are frequently prescribed for the treatment of intestinal disorders and investigated their effects on the RAW 264.7 murine macrophage cell line. Our results reveal that LA and BC are potent activators of both metabolic activity and innate immune responses in these cells. We also observed that LA and BC possessed similar activity in preventing infection simulated in vitro in murine macrophages by Salmonella typhimurium serovar enterica.  相似文献   

4.
While evidence shows that probiotic supplementation exerts beneficial effects on developing children and animals, it is unclear whether it would exert equal or similar effects on adult human and animals. In this study, response to probiotic lactobacilli in ileal mucosa of suckling and adult mice was compared by evaluating gene expression profiles using DNA microarray. Two probiotic strains, Lactobacillus gasseri CP2305s and Lactobacillus plantarum CPA305C were used. Supplementation of probiotics for 7 days affected completely different genes in suckling and adult mice, regardless of the probiotic strain. The results suggested that ileal mucosal responses to probiotics are age stage specific.  相似文献   

5.
The aim of this study was to investigate in vitro the protective effect of commercial probiotic strains (Bifidobacterium lactis Bb12 and Lactobacillus rhamnosus LGG) alone and in combination on the adhesion of pathogenic strains as Salmonella, Clostridium, and Escherichia coli to pig intestinal mucus obtained from different intestinal regions. In combination, probiotic strains enhanced each other’s adhesion, mainly in large intestinal mucus. Treatment of intestinal mucus with Bb12 and LGG, alone or in combination, significantly reduced (P < 0.05) the adhesion of the tested pathogens. The ability to inhibit pathogen adhesion appears to depend on the specific probiotics and pathogens and on the mucosal site. B. lactis Bb12 and L. rhamnosus LGG in combination revealed a better ability to inhibit adhesion of all pathogens tested to pig intestinal mucus than probiotic strains. Probiotic combinations could be useful for counteracting disease-associated aberrations in intestinal microbiota. Specific protective probiotics could be selected for particular pig pathogens. Probiotic strains from human origin and intended for human use also adhere to pig intestinal mucus and are able to displace and inhibit pathogens.  相似文献   

6.
Probiotic bacteria harbor effector molecules that confer health benefits, but also adaptation factors that enable them to persist in the gastrointestinal tract of the consumer. To study these adaptation factors, an antibiotic-resistant derivative of the probiotic model organism Lactobacillus plantarum WCFS1 was repeatedly exposed to the mouse digestive tract by three consecutive rounds of (re)feeding of the longest persisting colonies. This exposure to the murine intestine allowed the isolation of intestine-adapted derivatives of the original strain that displayed prolonged digestive tract residence time. Re-sequencing of the genomes of these adapted derivatives revealed single nucleotide polymorphisms as well as a single nucleotide insertion in comparison with the genome of the original WCFS1 strain. Detailed in silico analysis of the identified genomic modifications pinpointed that alterations in the coding regions of genes encoding cell envelope associated functions and energy metabolism appeared to be beneficial for the gastrointestinal tract survival of L. plantarum WCFS1. This work demonstrates the feasibility of experimental evolution for the enhancement of the gastrointestinal residence time of probiotic strains, while full-genome re-sequencing of the adapted isolates provided clues towards the bacterial functions involved. Enhanced gastrointestinal residence is industrially relevant because it enhances the efficacy of the delivery of viable probiotics in situ.  相似文献   

7.
8.
The present paper provides an overview on the use of probiotic organisms as live supplements, with particular emphasis on Lactobacillus acidophilus and Bifidobacterium spp. The therapeutic potential of these bacteria in fermented dairy products is dependent on their survival during manufacture and storage. Probiotic bacteria are increasingly used in food and pharmaceutical applications to balance disturbed intestinal microflora and related dysfunction of the human gastrointestinal tract. Lactobacillus acidophilus and Bifidobacterium spp. have been reported to be beneficial probiotic organisms that provide excellent therapeutic benefits. The biological activity of probiotic bacteria is due in part to their ability to attach to enterocytes. This inhibits the binding of enteric pathogens by a process of competitive exclusion. Attachment of probiotic bacteria to cell surface receptors of enterocytes also initiates signalling events that result in the synthesis of cytokines. Probiotic bacteria also exert an influence on commensal micro-organisms by the production of lactic acid and bacteriocins. These substances inhibit growth of pathogens and also alter the ecological balance of enteric commensals. Production of butyric acid by some probiotic bacteria affects the turnover of enterocytes and neutralizes the activity of dietary carcinogens, such as nitrosamines, that are generated by the metabolic activity of commensal bacteria in subjects consuming a high-protein diet. Therefore, inclusion of probiotic bacteria in fermented dairy products enhances their value as better therapeutic functional foods. However, insufficient viability and survival of these bacteria remain a problem in commercial food products. By selecting better functional probiotic strains and adopting improved methods to enhance survival, including the use of appropriate prebiotics and the optimal combination of probiotics and prebiotics (synbiotics), an increased delivery of viable bacteria in fermented products to the consumers can be achieved.  相似文献   

9.
Ciliate protists and rotifers are ubiquitous in aquatic habitats and can comprise a significant portion of the microbial food resources available to larval mosquitoes, often showing substantial declines in abundance in the presence of mosquito larvae. This top‐down regulation of protists is reported to be strong for mosquitoes inhabiting small aquatic containers such as pitcher plants or tree holes, but the nature of these interactions with larval mosquitoes developing in other aquatic habitats is poorly understood. We examined the effects of these two microbial groups on lower trophic level microbial food resources, such as bacteria, small flagellates, and organic particles, in the water column, and on Culex larval development and adult production. In three independent laboratory experiments using two microeukaryote species (one ciliate protist and one rotifer) acquired from field larval mosquito habitats and cultured in the laboratory, we determined the effects of Culex nigripalpus larval grazing on water column microbial dynamics, while simultaneously monitoring larval growth and development. The results revealed previously unknown interactions that were different from the top‐down regulation of microbial groups by mosquito larvae in other systems. Both ciliates and rotifers, singly or in combination, altered other microbial populations and inhibited mosquito growth. It is likely that these microeukaryotes, instead of serving as food resources, competed with early instar mosquito larvae for microbes such as small flagellates and bacteria in a density‐dependent manner. These findings help our understanding of the basic larval biology of Culex mosquitoes, variation in mosquito production among various larval habitats, and may have implications for existing vector control strategies and for developing novel microbial‐based control methods.  相似文献   

10.
Probiotic microorganisms are ingested as food or supplements and impart positive health benefits to consumers. Previous studies have indicated that probiotics transiently reside in the gastrointestinal tract and, in addition to modulating commensal species diversity, increase the expression of genes for carbohydrate metabolism in resident commensal bacterial species. In this study, it is demonstrated that the human gut commensal species Bacteroides thetaiotaomicron efficiently metabolizes fructan exopolysaccharide (EPS) synthesized by probiotic Lactobacillus reuteri strain 121 while only partially degrading reuteran and isomalto/malto-polysaccharide (IMMP) α-glucan EPS polymers. B. thetaiotaomicron metabolized these EPS molecules via the activation of enzymes and transport systems encoded by dedicated polysaccharide utilization loci specific for β-fructans and α-glucans. Reduced metabolism of reuteran and IMMP α-glucan EPS molecules may be due to reduced substrate binding by components of the starch utilization system (sus). This study reveals that microbial EPS substrates activate genes for carbohydrate metabolism in B. thetaiotaomicron and suggests that microbially derived carbohydrates provide a carbohydrate-rich reservoir for B. thetaiotaomicron nutrient acquisition in the gastrointestinal tract.  相似文献   

11.
Probiotic therapy is a new, successful approach to alleviating allergic symptoms. In this study, our aim was to investigate whether the positive results obtained with probiotic therapy would be associated with the differential absorption and utilization of dietary PUFA. 15 infants referred to a pediatric clinic on the basis of atopic eczema were weaned to Bifidobacterium Bb-12 or Lactobacillus GG supplemented infant formula, or to the same formula without probiotics (randomized, placebo-controlled, double blind study design). In plasma neutral lipids, alpha-linolenic acid (18:3 n-3) proportions were reduced by the probiotic supplementation. In phospholipids, Lactobacillus GG supplemented formula did not influence alpha-linolenic acid proportions, while Bifidobacterium Bb-12 supplemented formula increased the proportion of alpha-linolenic acid; from 0.13 +/- 0.03 to 0.24 +/- 0.03 (mean +/- SEM) (P = 0.002). These results show that some physiological effects of probiotics may be associated with physiological interactions between probiotics and dietary PUFA.  相似文献   

12.

The broad spectrum of health benefits attributed to probiotics has contributed to a rapid increase in the value of the probiotic market. Probiotic health benefits can be strain specific. Thus, strain-level identification of probiotic strains is of paramount importance to ensure probiotic efficacy. Both Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC (NCIMB 30242) strains have clinically proven health benefits; however, no assays were developed to enable strain-level identification of either of these strains. The objective of this study is to develop strain-specific PCR-based methods for Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC strains, and to validate these assays according to the guidelines for validating qualitative real-time PCR assays. Using RAST (Rapid Annotation using Subsystem Technology), unique sequence regions were identified in the genome sequences of both strains. Probe-based assays were designed and validated for specificity, sensitivity, efficiency, repeatability, and reproducibility. Both assays were specific to target strain with 100% true positive and 0% false positive rates. Reaction efficiency for both assays was in the range of 90 to 108% with R square values > 0.99. Repeatability and reproducibility were evaluated using five samples at three DNA concentrations each and relative standard deviation was < 4% for repeatability and < 8% for reproducibility. Both of the assays developed and validated in this study for the specific identification of Lactobacillus gasseri BNR17 and Lactobacillus reuteri LRC strains are specific, sensitive, and precise. These assays can be applied to evaluate and ensure compliance in probiotic products.

  相似文献   

13.
Relative predominance of each of five probiotic strains was investigated in the ileum of weaned pigs, compared with that in feces, when administered in combination at c. 5 x 10(9) CFU day(-1) for 28 days. Probiotic was excreted at 10(6)-10(9) CFU g(-1) feces, while ileal survival ranged from 10(2) to 10(6) CFU g(-1) digesta. In contrast to the feces, where Lactobacillus murinus DPC6002 predominated, the bacteriocin-producing Lactobacillus salivarus DPC6005 dominated over coadministered strains both in the ileum digesta and in mucosa. Probiotic administration did not alter counts of culturable fecal Lactobacillus or Enterobacteriaceae but higher ileal Enterobacteriaceae were observed in the ileal digesta of probiotic-fed pigs (P<0.05). We observed decreased CD25 induction on T cells and monocytes (P<0.01) and decreased CTLA-4 induction (P<0.05) by the mitogen phytohemagglutinin on CD4 T cells from the probiotic group. Probiotic treatment also increased the proportion of CD4+ CD8+ T cells within the peripheral T-cell population and increased ileal IL-8 mRNA expression (P<0.05). In conclusion, superior ileal survival of L. salivarius compared with the other coadministered probiotics may be due to a competitive advantage conferred by its bacteriocin. The findings also suggest that the five-strain combination may function as a probiotic, at least in part, via immunomodulation.  相似文献   

14.
Probiotic Lactobacillus strains are widely used to benefit human and animal health, although the exact mechanisms behind their interactions with the host and the microbiota are largely unknown. Fluorescent tagging of live probiotic cells is an important tool to unravel their modes of action. In this study, the implementation of different heterologously expressed fluorescent proteins for the labelling of the model probiotic strains Lactobacillus rhamnosusGG (gastrointestinal) and Lactobacillus rhamnosusGR‐1 (vaginal) was explored. Heterologous expression of mTagBFP2 and mCherry resulted in long‐lasting fluorescence of L. rhamnosusGG and GR‐1 cells, using the nisin‐controlled expression (NICE) system. These novel fluorescent strains were then used to study in vitro aspects of their microbe–microbe and microbe–host interactions. Lactobacillus rhamnosusGG and L. rhamnosusGR‐1 expressing mTagBFP2 and mCherry could be visualized in mixed‐species biofilms, where they inhibited biofilm formation by Salmonella Typhimurium–gfpmut3 expressing the green fluorescent protein. Likewise, fluorescent L. rhamnosusGG and L. rhamnosusGR‐1 were implemented for the visualization of their adhesion patterns to intestinal epithelial cell cultures. The fluorescent L. rhamnosus strains developed in this study can therefore serve as novel tools for the study of probiotic interactions with their environment.  相似文献   

15.
Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in effectiveness to exert health benefits for a patient. Probiotic delivery systems can be categorized into conventional, pharmaceutical formulations, and non-conventional, mainly commercial food-based, products. The degree of health benefits provided by these probiotic formulations varies in their ability to deliver viable, functional bacteria in large enough numbers (effectiveness), to provide protection against the harsh effects of the gastric environment and intestinal bile (in vivo protection), and to survive formulation processes (viability). This review discusses the effectiveness of these probiotic delivery systems to deliver viable functional bacteria focusing on the ability to protect the encapsulated probiotics during formulation process as well as against harsh physiological conditions through formulation enhancements using coatings and polymer enhancements. A brief overview on the health benefits of probiotics, current formulation, patient and legal issues facing probiotic delivery, and possible recommendations for the enhanced delivery of probiotic bacteria are also provided. Newer advanced in vitro analyses that can accurately determine the effectiveness of a probiotic formulation are also discussed with an ideal probiotic delivery system hypothesized through a combination of the two probiotic delivery systems described.  相似文献   

16.
The use of lactobacilli as probiotics in swine has been gaining attention due to their ability to improve growth performance and carcass quality, prevent gastrointestinal infection and most importantly, their ‘generally recognized as safe’ status. Previous studies support the potential of lactobacilli to regulate host immune systems, enhance gut metabolic capacities and maintain balance in the gut microbiota. Research on swine gut microbiota has revealed complex gut microbial community structure and showed the importance of Lactobacillus to the host's health. However, the species‐ and strain‐specific characteristics of lactobacilli that confer probiotic benefits are still not well understood. The diversity of probiotic traits in a complex gut ecosystem makes it challenging to infer the relationships between specific functions of Lactobacillus sp. and host health. In this review, we provide an overview of how lactobacilli play a pivotal role in the swine gut ecosystem and identify key characteristics that influence gut microbial community structure and the health of pigs. In addition, based on recent and ongoing meta‐omics and omics research on the gut microbiota of pigs, we suggest a workflow combining culture‐dependent and culture‐independent approaches for more effective selection of probiotic lactobacilli.  相似文献   

17.
Probiotic strains play an important role in modulating activities in the gut-associated lymphoid tissue. Elucidation of the mechanisms that mediate probiotic-driven immunomodulation may facilitate their therapeutic application for specific immune-mediated diseases or for prophylaxis. In this study, we explored the effect of different Lactobacillus spp. and Bifidobacterium lactis in transgenic mice expressing the human DQ8 heterodimer, a HLA molecule linked to Celiac Disease (CD). In vitro analysis on immature bone marrow-derived dendritic cells (iBMDCs) showed that all strains up-regulated surface B7-2 (CD86), indicative of DC maturation, however, with different intensity. No strain induced appreciable levels of IL-10 or IL-12 in iBMDCs, whereas TNF-α expression was essentially elicited by Lactobacillus paracasei and Lactobacillus fermentum. Interestingly, these strains were found also to increase the antigen-specific TNF-α secretion in vivo, following co-administration of probiotic bacteria in mice mucosally immunized with the gluten component gliadin. Together these findings highlighted the ability of probiotics to exert strain-specific inductive rather than suppressive effects both on the innate and adaptive immunity in a mouse model of food antigen sensitivity.  相似文献   

18.

Aims

The manufacturing processes have been reported to influence the properties of probiotics with potential impact on health properties. The aim was to investigate the effect of different growth media and inactivation methods on the properties of canine‐originated probiotic bacteria alone and in combination mixture.

Methods and Results

Three established dog probiotics, Lactobacillus fermentum VET9A, Lactobacillus plantarum VET14A and Lactobacillus rhamnosus VET16A, and their combination mixture were evaluated for their adhesion to dog mucus. The effect of different growth media, one reflecting laboratory and the other manufacturing conditions, and inactivation methods (95°C, 80°C and UV irradiation) on the mucus adhesion of the probiotic strains was characterized. Evaluation of dog probiotics was supported by cell visualization using transmission electron microscopy (TEM). Higher adhesion percentage was reported for probiotic strains growing in laboratory rather than in manufacturing conditions (P < 0·05). Inactivation by heat (95°C, 80°C) decreased the adhesion properties when strains were cultivated in soy‐based growth media compared with those grown in MRS broth (P < 0·05). TEM observations uncovered differences in cell‐surface components in nonviable forms of probiotic strains as compared with their viable forms.

Conclusions

Manufacturing process conditions such as growth media and pretreatment methods may significantly affect the adhesive ability of the tested strains.

Significance and Impact of the Study

Growth conditions, growth media, pretreatment methods and different probiotic combinations should be carefully considered for quality control of existing probiotics and for identification of new probiotics for dogs. These may also have an impact on health benefits for the host.  相似文献   

19.
Probiotic bacteria are microorganisms that benefit the host by preventing or ameliorating disease. However, little information is known regarding the scientific rationale for using probiotics as alternative medicine. The purpose of this paper is to investigate the mechanisms of probiotic beneficial effects on intestinal cell homeostasis. We now report that one such probiotic, Lactobacillus rhamnosus GG (LGG), prevents cytokine-induced apoptosis in two different intestinal epithelial cell models. Culture of LGG with either mouse or human colon cells activates the anti-apoptotic Akt/protein kinase B. This model probiotic also inhibits activation of the pro-apoptotic p38/mitogen-activated protein kinase by tumor necrosis factor, interleukin-1alpha, or gamma-interferon. Furthermore, products recovered from LGG culture broth supernatant show concentration-dependent activation of Akt and inhibition of cytokine-induced apoptosis. These observations suggest a novel mechanism of communication between probiotic microorganisms and epithelia that increases survival of intestinal cells normally found in an environment of pro-apoptotic cytokines.  相似文献   

20.
The application of probiotics and prebiotics to the manipulation of the microbial ecology of the human colon has recently seen many scientific advances. The sequencing of probiotic genomes is providing a wealth of new information on the biology of these microorganisms. In addition, we are learning more about the interactions of probiotics with human cells and with pathogenic bacteria. An alternative means of modulating the colonic microbial community is by the use of prebiotic oligosaccharides. Increasing knowledge of the metabolism of prebiotics by probiotics is allowing us to consider specifically targeting such dietary intervention tools at specific population groups and specific disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号