首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human‐induced fragmentation and disturbance of natural habitats can shift abundance and composition of frugivore assemblages, which may alter patterns of frugivory and seed dispersal. However, despite their relevance to the functioning of ecosystems, plant‐frugivore interactions in fragmented areas have been to date poorly studied. I investigated spatial variation of avian frugivore assemblages and fruit removal by dispersers and predators from Mediterranean myrtle shrubs (Myrtus communis) in relation to the degree of fragmentation and habitat features of nine woodland patches (72 plants). The study was conducted within the chronically fragmented landscape of the Guadalquivir Valley (SW Spain), characterized by ~1% of woodland cover. Results showed that the abundance and composition of the disperser guild was not affected by fragmentation, habitat features or geographical location. However, individual species and groups of resident/migrant birds responded differently: whereas resident dispersers were more abundant in large patches, wintering dispersers were more abundant in fruit‐rich patches. Predator abundances were similar between patches, although the guild composition shifted with fragmentation. The proportion of myrtle fruits consumed by dispersers and predators varied greatly between patches, but did not depend on bird abundances. The geographical location of patches determined the presence or absence of interactions between myrtles and seed predators (six predated and three non‐predated patches), a fact that greatly influenced fruit dispersal success. Moreover, predation rates were lower (and dispersal rates higher) in large patches with fruit‐poor heterospecific environments (i.e. dominated by myrtle). Predator satiation and a higher preference for heterospecific fruits by dispersers may explain these patterns. These results show that 1) the frugivore assemblage in warm Mediterranean lowlands is mostly composed of fragmentation‐tolerant species that respond differently to landscape changes; and 2) that the feeding behaviour of both dispersers and predators influenced by local fruit availability may be of great importance for interpreting patterns of frugivory throughout the study area.  相似文献   

2.
Spatio-temporal variations in the composition of the animal interactive assemblages may result in variations in selective pressures on the plants. In ant–seed dispersal mutualisms, the study of the magnitude of spatial and temporal variation of ant assemblages is rarely studied, limiting inferences and generalizations on the evolution of this mutualism. Here, we describe the ant–disperser assemblage of the myrmecochorous herb Helleborus foetidus in 14 populations across the Iberian Peninsula, and dissect the variation in the assemblage into spatial and temporal components as a first step to evaluate the evolutionary potential of this interaction. The ant–visitor assemblage of H. foetidus was mainly represented by species of Formicinae and it was highly diverse and variable in composition and function. Ants behaving as legitimate dispersers and those with mixed behaviour numerically dominated the assemblage compared with elaiosome consumers. The magnitude of the spatial variation was higher than the temporal variation, suggesting that the relative frequency of each functional group will be more foreseeable among years in each population than among populations. At the expense of further analysis of the effects of such variation on dispersal success, we can envisage a selection mosaic scenario, where local adaptive responses of plants might arise as a result of local variations in the specific composition and function of the assemblage.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 135–150.  相似文献   

3.
Myrmecochory or seed dispersal by ants is often described as a diffuse mutualism, because many of the ant species that function as partners are considered to be similar in terms of the frequency and consequences of their interactions. In this work, we test this assumption by conducting ant community surveys and seed removal experiments in six study sites located within a semi‐arid region of northwest Argentina. At each site, we characterized the ant assemblage that interacted with the seeds of Jatropha excisa Griseb. (Euphorbiaceae), an ant‐dispersed native shrub. Our results demonstrate that seed removal was dominated by one species, Pogonomyrmex cunicularius Mayr (Hymenoptera: Formicidae: Myrmicinae), which was responsible of 84% of the observed seed removal events. Although several ant species were attracted to the elaiosome‐bearing seeds of J. excisa, seed removal did not depend on ant community composition (species richness and ant activity) but was significantly influenced by the abundance of P. cunicularius. Its physical, behavioral, and ecological attributes are common with other ant species that have been characterized as keystone seed dispersers in other regions of the world. Nest feeding with marked seeds revealed that once P. cunicularius ants consume the elaiosomes, seeds are left inside the nests undamaged and at an appropriate depth for emergence. Our results support the hypothesis that myrmecochory is often an unevenly diffuse mutualism (i.e., one partner species is particularly important) and that at a local scale P. cunicularius is the keystone seed disperser of J. excisa.  相似文献   

4.
In myrmecochory, the relocation of diaspores to ant nests may lead to the enhancement of plant fitness because ant nests and their middens are often richer in essential nutrients than surrounding areas. This idea is the basis of the nutrient‐enrichment hypothesis (NEH), which suggests that nutrient enrichment may be a major selective influence in the evolution of myrmecochory. However, there is little evidence regarding whether the greater plant performance and fitness enhancement in ant nests is due to nutrient enrichment or other benefits of directed dispersal. Here, we present the results of a large‐scale seed‐sowing experiment that tests the NEH in the ant‐dispersed perennial herb Helleborus foetidus, exploring geographical and inter‐ant taxa variation. Experiments were conducted in three well‐separated regions of the Iberian Peninsula, targeting the nests of major and minor local ant dispersers (nine ant species in total) and the soil beneath maternal plants as seed destinations. Seedling emergence, survival and early establishment rates, as well as variation in soil characteristics, were obtained for each seed destination at each region. Our results do not fully support the NEH in our study system. Instead, we found that the advantage of ant nest soil for establishment in H. foetidus was conditional. Differences in soil fertility and concomitant differences in seedling establishment between ant nests and beneath the canopy of maternal plants were observed in some regions and for some ant species, but not in others. Thus, the conditional outcomes arise from inconsistencies among regions, between stages of seedling regeneration and among ant species in the advantages of being dispersed to nests. Because variation in the guilds of ant dispersers of myrmecochore plants across their ranges is common, this study illustrates the need to consider geographic and inter‐ant taxa variation for a complete evaluation of the NEH.  相似文献   

5.
Fruit colour influences fruit choice by seed dispersers. The mistletoe Tristerix corymbosus (Loranthaceae) produces mature fruits of two different colours in two different biomes: yellow in the Chilean matorral and green in the temperate forest of southern South America. We conducted field surveys to establish the association between fruit colour and disperser identity throughout the entire geographical range of T. corymbosus. We selected 22 populations, eight of which were located in the Chilean matorral and 14 in the temperate forest south of the matorral. To identify the seed dispersers of the mistletoe we used direct observation, camera traps, and live‐trapping of small mammals. We also report experiments to assess fruit selection by seed dispersers based on differences in colour. The assemblages of dispersers of T. corymbosus differ between the two biomes: yellow fruits in Chilean matorral are exclusively dispersed by three bird species while green fruits in the temperate forest are exclusively dispersed by a marsupial. The differences in the assemblages of seed dispersers can be explained by differences in food‐finding strategies between the two assemblages. Green fruits in temperate forest are not easily detected by birds, while colour might not be an important cue for the marsupial because it is nocturnal and uses other senses to locate food. We propose that the association between the marsupial and the green‐fruited mistletoe constitutes an ecological fitting rather than the outcome of a co‐evolutionary process. The marsupial might have allowed the mistletoe T. corymbosus to retain green coloration in mature fruit, a condition to which it is preadapted by a slower ripening process in temperate forest populations.  相似文献   

6.
Evaluations of ecological restoration typically focus on associating measures of structural properties of ecosystems (e.g. species diversity) with time since restoration efforts commenced. Such studies often conclude a failure to achieve restoration goals without examining functional performance of the organism assemblages in question. We compared diversity and composition of ant assemblages and the rates of seed removal by ants in pastures, 4‐ to 10‐year old revegetated areas and remnants of Cumberland Plain Woodland, and an endangered ecological community in Sydney, Australia. Ant assemblages of forest remnant sites had significantly higher species richness, significantly different species composition and a more complex functional group structure in comparison with ant assemblages of pasture and revegetated sites, which did not differ significantly. However, the rates of seed removal by ants in revegetated sites were similar to those in forest remnants, with the rates in pasture sites being significantly lower. Approximately, one‐third of all ant species were observed to remove seeds. Forest remnant sites had significantly different assemblages of seed removing ant species from those in pasture and revegetated sites. These results demonstrate that similar ant assemblages of unrestored and restored areas can function differently, depending on habitat context. Evaluation of restoration success by quantifying ecosystem structure and function offers more insights into ecosystem recovery than reliance on structural data alone.  相似文献   

7.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

8.
For a plant with bird-dispersed seeds, the effectiveness of seed dispersal can change with fruit availability at scales ranging from individual plants to neighborhoods, and the scale at which frugivory patterns emerge may be specific for frugivorous species differing in their life-history and behavior. The authors explore the influence of multispecies fruit availability at two local spatial scales on fruit consumption of Eugenia uniflora trees for two functional groups of birds. The authors related visitation and fruit removal by fruit gulpers and pulp mashers to crop size and conspecific and heterospecific fruit abundance to assess the potential roles that facilitative or competitive interactions play on seed dispersal. The same fruiting scenario influenced fruit gulpers (legitimate seed dispersers) and pulp mashers (inefficient dispersers) in different ways. Visits and fruit removal by legitimate seed dispersers were positively related to crop size and slightly related to conspecific, but not to heterospecific fruit neighborhoods. Visits and fruit consumption by pulp mashers was not related to crop size and decreased with heterospecific fruit availability in neighborhoods; however, this might not result in competition for dispersers. The weak evidence for facilitative or competitive processes suggest that interaction of E. uniflora with seed dispersers may depend primarily on crop size or other plant’s attributes susceptible to selection. The results give limited support to the hypothesis that spatial patterns of fruit availability influence fruit consumption by birds, and highlight the importance of considering separately legitimate and inefficient dispersers to explain the mechanisms that lie behind spatial patterns of seed dispersal.  相似文献   

9.
The dependence of mistletoes on few dispersers and the directed dispersal they provide is well known, yet no recent work has quantified either the effectiveness of these ‘legitimate’ dispersers, or the extent of redundancy among them. Here, I use the seed dispersal effectiveness (SDE) framework to analyze how birds (Mionectes striaticollis and Zimmerius bolivianus) contribute to mistletoe (Struthanthus acuminatus and Phthirusa retroflexa) infection in traditional mixed plantations within a humid montane forest in Bolivia. I calculated SDE for each bird–mistletoe pair and for the disperser assemblage, by estimating both the quantity and the quality of dispersal. The quantity of dispersal was measured as: (1) disperser abundance; (2) frequency of visits; and (3) number of seeds dispersed per visit, and the quality of dispersal was measured as: (1) germination percentage and speed of germination of seeds regurgitated by birds; and (2) the concordance of deposited seeds and seedling distribution patterns with adult mistletoe distribution at three scales (habitat, host, and microhabitat). Dispersers were not redundant: the more generalist species M. striaticollis dispersed more seeds, but provided lower quality seed dispersal, whereas the mistletoe specialist Z. bolivianus provided low‐quantity and high‐quality seed dispersal. Whereas S. acuminatus benefited more from the SDE of Z. bolivianus, P. retroflexa benefited from the complementary seed dispersal provided by both birds. These results demonstrate how sympatric mistletoes that share the same disperser assemblage may develop different relationships with specific vectors, and describe how the services provided by two different dispersers (one that provides high‐quality and one that provides high‐quantity dispersal) interact to shape spatial patterns of plants.  相似文献   

10.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

11.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

12.
The evolution of dispersal at range margins received much attention recently, especially in the context of dynamic range shifts, such as those following climate change. However, much less attention has been devoted to study variation in and selection on dispersal at nonexpanding range margins, where populations are often small and isolated, and empirical test is dearly missing. To fill this gap, we tested whether dispersal of an ant‐dispersed perennial plant (Sternbergia clusiana) is quantitatively and/or qualitatively reduced toward a nonexpanding range margin. We evaluated plant investment in dispersal structures (elaiosome), seed removal rates, and the relative abundance, activity, and behavior of low‐ and high‐quality seed‐dispersing ants in six sites ranging from mesic Mediterranean site to arid site (>600 to <100 mm of annual rainfall, respectively), which marks the southern range margin of the species. In a set of cafeteria and baiting experiments, we found that overall seed removal rates, the contribution of high‐quality dispersers, maximum dispersal distance and dispersal‐conducive ant behavior decreased toward range margins. These findings agree with a lower investment in reward by range margin plant populations, as reflected by lower elaiosome/seed ratio, but not by variation in the reward chemistry. More than variation in traits controlled by the plants, the variation in ant–seed interactions could be attributed to reduced presence and activity of the more efficient seed‐dispersing ants in the marginal populations. Specifically, we found a mismatch between local distribution of potentially effective seed dispersers and that of the plant, even though those dispersers were observed in the study site. Interestingly, although the observed variation in the outcome of ant–seed interactions supported the prediction of reduced dispersal at nonexpanding range margins with small and isolated populations, the underlying mechanism seems to be incidental difference in the seed‐dispersing ant community rather than a plant‐mediated response to selection.  相似文献   

13.
One of the key hypothesized drivers of gradients in species richness is environmental filtering, where environmental stress limits which species from a larger species pool gain membership in a local community owing to their traits. Whereas most studies focus on small‐scale variation in functional traits along environmental gradient, the effect of large‐scale environmental filtering is less well understood. Furthermore, it has been rarely tested whether the factors that constrain the niche space limit the total number of coexisting species. We assessed the role of environmental filtering in shaping tree assemblages across North America north of Mexico by testing the hypothesis that colder, drier, or seasonal environments (stressful conditions for most plants) constrain tree trait diversity and thereby limit species richness. We assessed geographic patterns in trait filtering and their relationships to species richness pattern using a comprehensive set of tree range maps. We focused on four key plant functional traits reflecting major life history axes (maximum height, specific leaf area, seed mass, and wood density) and four climatic variables (annual mean and seasonality of temperature and precipitation). We tested for significant spatial shifts in trait means and variances using a null model approach. While we found significant shifts in mean species’ trait values at most grid cells, trait variances at most grid cells did not deviate from the null expectation. Measures of environmental harshness (cold, dry, seasonal climates) and lower species richness were weakly associated with a reduction in variance of seed mass and specific leaf area. The pattern in variance of height and wood density was, however, opposite. These findings do not support the hypothesis that more stressful conditions universally limit species and trait diversity in North America. Environmental filtering does, however, structure assemblage composition, by selecting for certain optimum trait values under a given set of conditions.  相似文献   

14.
Variation in plant traits among plant species may promote the development of a characteristic functional assemblage of insect herbivores associated with each plant species. However, only a small number of studies have detailed the representation of several herbivore guilds among co‐occurring plant species to determine whether the functional structure of herbivorous insect assemblages varies widely and consistently among plant species. The present study provides one of the few published data sets reporting on the density of several guilds of insect herbivores among numerous plant species. Variation in guild associations with plant phenology and season are also described. Insect herbivores were divided into 10 guilds, and the representation of these guilds was examined for 18 co‐occurring plant species. Guild densities and assemblage composition varied significantly among plant species, even when variation over time was taken into account. Variation in guild densities and assemblage composition were not strongly related to the taxonomic relationships of the plants. The highest densities of several guilds occurred in spring and summer, although other guilds were not strongly seasonal. Certain guilds were strongly associated with the presence of new leaves, whereas other guilds appeared to prefer mature leaves. This resulted in assemblage differences between samples containing new and mature leaves and samples containing mature leaves only. Even though the timing and duration of leaf and flower production varied among plant species, this did not explain all variation in guild densities among plant species. It is suggested that additional factors, including plant traits, are contributing to the wide and consistent variation in herbivore assemblage composition among plant species.  相似文献   

15.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   

16.
Understanding what mechanisms shape the diversity and composition of biological assemblages across broad‐scale gradients is central to ecology. Litter‐consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α‐diversity increasing towards high latitudes but no trend in γ‐diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species‐poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species‐rich and non‐nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter‐consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α‐diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function‐based rather than taxon‐based analyses of assemblages may help elucidate the mechanisms behind diversity gradients.  相似文献   

17.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

18.
The disappearance of native seed dispersers due to anthropogenic activities is often accompanied by the introduction of alien species, which may to some extent replace the ecological service provided by the extinct ones. Yet, little empirical evidence exists demonstrating the evolutionary consequences of such alien “replacement.” Here, we document the conflicting selection exerted on seed size by two native lizards (Podarcis lilfordi and P. pityusensis) and an alien mammal species (Martes martes), all acting as legitimate seed dispersers of the Mediterranean relict Cneorum tricoccon. While lizards mostly exerted a negative directional selection on seed diameter, especially P. pityusensis, the much larger pine marten exerted positive selection on seed size. Our findings suggest that this among‐disperser variation in the selection regimes, together with the occurrence of spatial variation in the presence of each seed disperser, help to create the geographical variation observed for seed size of C. tricoccon. To our knowledge, this is the first empirical evidence showing opposing selective pressures between native and alien species in the seed dispersal process in an invaded ecosystem.  相似文献   

19.

Death assemblages produced by chemoautotrophic communities at cold seeps represent a type of autochthonous accumulation that is difficult to differentiate from other heterotrophic autochthonous communities using taphonomic characteristics. We test the hypothesis that cold‐seep assemblages can be discriminated by unique biological or community attributes rather than taphonomic attributes. To test this hypothesis, we compared several cold seeps on the Louisiana upper continental slope to heterotrophic sites on the Louisiana slope and to a putative seep site in the middle‐late Campanian Pierre Shale near Pueblo, Colorado. Seep assemblages are characterized by a unique tier and guild structure, size‐frequency composition, and animal density that together identify the palaeoenergetics structure of these communities and distinguish them from the other assemblages of the shelf and slope. All seep assemblages were dominated by primary consumers, whereas the heterotrophic assemblage was dominated by carnivores. Carnivore dominance seems to be typical of shelf (or euhaline) death assemblages. Seep assemblages, in contrast, retain the theoretically‐expected rarity of predaceous forms in fossil assemblages. Epifauna and semi‐infauna dominate the tier structure of the heterotrophic assemblage as is typical for continental shelf and slope assemblages. The infaunal tier was unusually well represented in most petroleum seep assemblages. Local enrichment of food resources and the dominance of shelled primary consumers explain the guild and tier structure of seep assemblages. Hindcasting of energy demand (palaeoingestion) and an estimate of sedimentation rate confirms that energy demand by the community exceeds the supply from planktonic rain in seep communities. Thus, seep assemblages can be recognized using biological attributes where taphonomic analysis is ambiguous.  相似文献   

20.
Seed dispersal by birds constitutes an essential mechanism for ornithochorous exotic plants to successfully invade a new system. New biotic associations with native birds might facilitate the upward spread of exotic plants from the foothills into the high mountains. However, environmental changes associated with elevation are known to drive changes in bird assemblages, and it is not clear how elevation changes impact the seed dispersal service of ornithochorous invaders. We evaluated changes in frugivorous bird assemblages of one of the exotic shrubs (Cotoneaster franchetii, Rosaceae) with the broadest elevation range among woody invaders in the Córdoba Mountains (Argentina). We quantified frugivory interactions (including absolute and proportional fruit consumption by seed dispersers, pulp consumers, and seed predators) using 4-h observations of focal C. franchetii shrubs distributed across low-elevation, mid-elevation, and high-elevation sites (700, 1100, and 1800 m a.s.l., respectively; 15 individuals per elevational band and one site per elevation). Seed disperser richness was highest at the low- and mid-elevation sites (three species vs. one at the high-elevation site), but proportional and absolute fruit consumption of C. franchetii was highest at the high-elevation site (39.1%, 88 seeds at high-elevation and 7.7%, 20 seeds at low-elevation). The Chiguanco Thrush (Turdus chiguanco, Turdidae) was the only seed disperser species found at the highest elevation site. Fruit consumption by seed dispersers was positively related to their abundance and elevation. In a high mountain system, a single abundant generalist seed disperser, rather than a high richness of seed disperser species, can uphold an effective dispersal service for an invasive ornithochorous shrub. This pattern may facilitate the spread of such plants across higher elevational ranges, thereby promoting the invasion of other exotic ornithochorous plants into upper elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号