首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea.

Results

We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A.

Conclusions

The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H isoform, the catalytic mechanism is conserved. Sequence analysis in light of the structure indicates that additional members of isoform H likely exist in the databases but have been misannotated.  相似文献   

2.
The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described. Proteins 2015; 83:389–394. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Metabolic plasticity of Mycobacterium renders high degree of adaptive advantages in the persistence through the upregulation of glyoxylate shunt. The malate synthase (MS), an important enzyme of the shunt belongs to the G isoform and expressed predominantly as monomer. Here we did a comparative unfolding studies of two homologous MS from Mycobacterium tuberculosis (MtbMS) and Escherichia coli (ecMS) using various biophysical techniques. Despite having high sequence identities, they show different structural, stability and functional properties. The study suggests that the differences in the stability and unfolding of the two enzymes are by virtue of differential electrostatic modulation unique to their respective molecular assembly.  相似文献   

4.
Boughton BA  Dobson RC  Hutton CA 《Proteins》2012,80(8):2117-2122
The crystal structure of Escherichia coli dihydrodipicolinate synthase with pyruvate and substrate analogue succinic acid semialdehyde condensed with the active site lysine‐161 was solved to a resolution of 2.3 Å. Comparative analysis to a previously reported structure both resolves the configuration at the aldol addition center, where the final addition product clearly displays the (S)‐configuration, and the final conformation of the adduct within the active site. Direct comparison to two other crystal structures found in the Protein Data Bank, 1YXC, and 3DU0, demonstrates significant similarity between the active site residues of these structures. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

5.
There are enormous evidences and previous reports standpoint that the enzyme of glyoxylate pathway malate synthase G (MSG) is a potential virulence factor in several pathogenic organisms, including Brucella melitensis 16M. Where the lack of crystal structures for best candidate proteins like MSG of B. melitensis 16M creates big lacuna to understand the molecular pathogenesis of brucellosis. In the present study, we have constructed a 3-D structure of MSG of Brucella melitensis 16M in MODELLER with the help of crystal structure of Mycobacterium tuberculosis malate synthase (PDB ID: 2GQ3) as template. The stereo chemical quality of the restrained model was evaluated by SAVES server; remarkably we identified the catalytic functional core domain located at 4th cleft with conserved catalytic amino acids, start at ILE 59 to VAL 586 manifest the function of the protein. Furthermore, virtual screening and docking results reveals that best leadmolecules binds at the core domain pocket of MSG catalytic residues and these ligand leads could be the best prospective inhibitors to treat brucellosis.  相似文献   

6.
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQδ subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.  相似文献   

7.
Hua Li  Gerwald Jogl 《Proteins》2013,81(3):538-543
Decaprenylphosphoryl‐β‐D ‐ribose 2'‐epimerase (DprE1) is an essential enzyme in the biosynthesis of cell wall components and a target for development of anti‐tuberculosis drugs. We determined the crystal structure of a truncated form of DprE1 from Mycobacterium smegmatis in two crystal forms to up to 2.35 Å resolution. The structure extends from residue 75 to the C‐terminus and shares homology with FAD‐dependent oxidoreductases of the vanillyl‐alcohol oxidase family including the DprE1 homologue from M. tuberculosis. The M. smegmatis DprE1 structure reported here provides further insights into the active site geometry of this tuberculosis drug target. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
The endogenous Escherichia coli porin OmpF was crystallized as an accidental by‐product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine‐12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 Å, b = 210.5 Å, c = 137 Å, and β = 100.5°, and the resolution of 3.8 Å. The second structure was solved at the resolution of 4.4 Å and was refined in the P321 space group, with unit cell parameters a = 215.5 Å, b = 215.5 Å, c = 137.5 Å, and γ = 120°. Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.  相似文献   

10.
The mechanosensitive channel of small conductance (MscS) contributes to the survival of bacteria during osmotic downshock by transiently opening large diameter pores for the efflux of cellular contents before the membrane ruptures. Two crystal structures of the Escherichia coli MscS are currently available, the wild type protein in a nonconducting state at 3.7 Å resolution (Bass et al., Science 2002; 298:1582–1587) and the Ala106Val variant in an open state at 3.45 Å resolution (Wang et al., Science 2008; 321:1179–1183). Both structures used protein solubilized in the detergent fos‐choline‐14. We report here crystal structures of MscS from E. coli and Helicobacter pylori solubilized in the detergent β‐dodecylmaltoside at resolutions of 4.4 and 4.2 Å, respectively. While the cytoplasmic domains are unchanged in these structures, distinct conformations of the transmembrane domains are observed. Intriguingly, β‐dodecylmaltoside solubilized wild type E. coli MscS adopts the open state structure of A106V E. coli MscS, while H. pylori MscS resembles the nonconducting state structure observed for fos‐choline‐14 solubilized E. coli MscS. These results highlight the sensitivity of membrane protein conformational equilibria to variations in detergent, crystallization conditions, and protein sequence.  相似文献   

11.
The crystal structure of the cytoplasmic domain (CTD) from the mechanosensitive channel of large conductance (MscL) in E. coli has been determined at 1.45 Å resolution. This domain forms a pentameric coiled coil similar to that observed in the structure of MscL from M. tuberculosis and also found in the cartilage oligomeric matrix protein (COMPcc). It contains canonical hydrophobic and atypical ionic interactions compared to previously characterized coiled coil structures. Thermodynamic analysis indicates that while the free EcMscL‐CTD is less stable than other coiled coils, it is likely to remain folded in context of the full‐length channel.  相似文献   

12.
Here, we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C‐terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared with the solution structure. On the basis of these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti‐mycobacterial agents, or as chemical genetic probes of function. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The 26-kDa glutathione S-transferase from Schistosoma japonica (Sj26), a potential antischistosomal vaccine antigen, has been crystallized in an unligated form. Sj26 was recombinantly produced in E. coli without using a glutathione affinity column to facilitate preparation of unligated enzyme. The recombinant protein contains all 218 residues of Sj261,2 and an additional 13 residues linked to the C-terminus. Crystals of recombinant Sj26 were obtained by the vapor diffusion method using ammonium sulfate as the precipitant at pH 5.6. The crystals belong to the hexagonal space group P6322 with unit cell dimensions a = b = 125.2 Å and c = 72.0 Å and contain one Sj26 monomer per asymmetric unit. A complete native diffraction data set has been obtained to 2.4 Å resolution. © 1995 Wiley-Liss, Inc.  相似文献   

14.
A new crystal structure of the dimeric cysteine synthase CysM from Mycobacterium tuberculosis reveals an open and a closed conformation of the enzyme. In the closed conformation the five carboxy-terminal amino acid residues are inserted into the active site cleft. Removal of this segment results in a decreased lifetime of the α-aminoacrylate reaction intermediate, an increased sensitivity to oxidants such as hydrogen peroxide, and loss of substrate selectivity with respect to the sulfur carrier thiocarboxylated CysO. These results highlight features of CysM that might be of particular importance for cysteine biosynthesis under oxidative stress in M. tuberculosis.  相似文献   

15.
16.
Mycobacterium tuberculosis evades host immune responses by colonizing macrophages. Intraphagosomal M. tuberculosis is exposed to environmental stresses such as reactive oxygen and nitrogen intermediates as well as acid shock and inorganic phosphate (Pi) depletion. Experimental evidence suggests that expression levels of mycobacterial protein PstS3 (Rv0928) are significantly increased when M. tuberculosis bacilli are exposed to Pi starvation. Hence, PstS3 may be important for survival of Mtb in conditions where there is limited supply of Pi. We report here the structure of PstS3 from M. tuberculosis at 2.3‐Å resolution. The protein presents a structure typical for ABC phosphate transfer receptors. Comparison with its cognate receptor PstS1 showed a different pattern distribution of surface charges in proximity to the Pi recognition site, suggesting complementary roles of the two proteins in Pi uptake. Proteins 2014; 82:2268–2274. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Nogales J  Guijo MI  Quesada A  Merchán F 《Planta》2004,219(2):325-331
Malate synthase (EC 2.3.3.9, formerly EC 4.1.2.2) has been investigated in the unicellular green algae Chlamydomonas reinhardtii. The molecular characteristics and the regulation of gene expression have been investigated for the enzyme. A full-length malate synthase cDNA has been isolated, containing an open reading frame of 1,641 bp encoding a polypeptide of 546 amino acids. This protein shares the conserved signature of the malate synthase family, along with the catalytic residues essential for enzymatic activity and a C-terminal motif that matches the consensus for glyoxysome import. Functionality studies have been facilitated by heterologous expression of the malate synthase cDNA in Escherichia coli. The remarkable metabolic versatility of the alga has been used to analyse the metabolic control of malate synthase gene expression. The data strongly support the role of acetate and light as the main regulatory effectors, and the existence of cross-talk between the two signalling pathways.Abbreviations IPTG Isopropyl -d-thiogalactopyranoside - MS Malate synthase - PCR Polymerase chain reaction - PTS Peroxisomal targeting sequence - RACE Rapid amplification of cDNA ends - TAP Tris–acetate–phosphate medium - TCA Tricarboxylic acid cycle  相似文献   

18.
Endoglucanase CelC from Clostridium thermocellum expressed in Escherichia coli has been crystallized in two different crystal forms by the hanging drop method. Crystals of form I were grown with polyethylene glycol as a precipitant. They are orthorhombic, space group P212121, with cell dimensions a =51.4 Å, b =84.3 Å, and c =87.5 Å. Crystals of form II, obtained in ammonium sulfate solutions, belong to the tetragonal space group P41212 (or P43212) with cell dimensions of a = b = 130.7 Å and c = 69.6 Å. Diffraction data to 2.8 Å resolution were observed for both crystal forms with a rotating anode generator. Preliminary oscillation images of the orthorhombic form I crystals using a synchrotron radiation source show diffraction to 2.2 Å resolution, indicating that these crystals are suitable for high resolution crystallographic analysis. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Cysteine synthase (O-acetylserine (thiol) lyase, EC 4.2.99.8) and -cyanoalanine synthase (EC 4.4.1.9) have been isolated from leaves of Spinacea oleracea L. and separated by anion-exchange chromatography. Further separation of one minor and two major isoforms of cysteine synthase was achieved by hydrophobic interaction chromatography and high resolution native electrophoresis (PAGE). Analysis of root material indicated that amongst the multiple isoforms present, a single isoform predominated. Subcellular fractionation studies indicated that one of the major leaf forms, cysteine synthase B, was located in the chloroplast and the other, cysteine synthase B, occurred in the cytoplasm. No specific isoform of cysteine synthase was resolved in the mitochondria, while cyanoalanine synthase was predominantly located in the mitochondrial fraction. Sulphur deprivation decreased cysteine synthase activity, but not cyanalanine synthase activity in both young and mature leaves, although cysteine synthase activity in the roots increased slightly. A selective decrease in cystein synthase B (chloroplastic abundance was observed in mature leaves. Patterns of expression of cysteine synthase in response to S-availability are discussed in relation to possible roles for this enzyme in controlling S-flux through the S-assimilatory pathway.Key words: Cysteine synthase isoforms (expression of), Spinacea oleracea L., sulphur deficiency.   相似文献   

20.
Malate synthase is an essential metabolic enzyme of the glyoxylate bypass that makes possible the replenishment of carbon intermediates to cells grown on acetate. A polymerase chain reaction (PCR)-based molecular screening investigation of full-length malate synthase genes from Streptomyces spp. was initiated by our group. To this end, consensus primers were designed based on known streptomycete malate synthase sequences and successful amplification was obtained for Streptomyces griseus, S. fimbriatus and S. lipmanii. The putative full-length malate synthase gene from S. griseus was subsequently cloned, sequenced and expressed. Sequence analysis of this gene showed very high identity with other streptomycete malate synthase genes. Furthermore, high malate synthase activity was detected after heterologous expression in Escherichia coli, thus demonstrating successfully the rapid cloning and functional verification of a streptomycete malate synthase gene. Growth studies of S. griseus revealed that malate synthase activity was induced by the presence of acetate, which is a two-carbon source. Interestingly, the activity peaked during late growth phase when the biomass was declining, suggesting that the enzyme may have a late role in metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号