首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY 1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g−1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (≤5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.  相似文献   

2.
Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This ‘release’ from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate “pre-invasion” reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.  相似文献   

3.
1. Hyper-successful exotic species can both displace the native prey that formerly made up a native predator's diet and represent an abundant potential prey resource for native predators. Little is known about how this drastic change affects native predators, or their short- and long term potential to regulate the exotic species.
2. We compared zebra mussel consumption by pumpkinseed sunfish ( Lepomis gibbosus ), redbreast sunfish ( Lepomis auritus ) and rock bass ( Ambloplites rupestris ) from populations that were either previously exposed to zebra mussels or naive to them.
3. Fish from populations with longer exposure to zebra mussels consumed many more zebra mussels than fish from populations with shorter or no previous exposure to zebra mussels.
4. Our experiment does not allow us to identify the mechanisms that underlie the patterns we found, but we discuss several plausible scenarios and their ecological implications.
5. Predator adaptation to exotic prey may be an important but overlooked factor in invasion biology. The initial response to exotic prey by a native predator may be a poor estimate of its ability to present biotic resistance to the invasion over the long term.  相似文献   

4.
The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra mussel (Dreissena polymorpha) by comparing handling time and predation rate on zebra mussels in the laboratory by two North American species (pumpkinseed, Lepomis gibbosus, and rusty crayfish, Orconectes rusticus) and one predator with a long evolutionary history with zebra mussels (round goby, Neogobius melanostomus). Handling time per mussel (7 mm shell length) ranged from 25 to >70 s for the three predator species. Feeding rates on attached zebra mussels were higher for round goby than the two native predators. Medium and large gobies consumed 50–67 zebra mussels attached to stones in 24 h, whereas pumpkinseed and rusty crayfish consumed <11. This supports the hypothesis that the rapid spread of zebra mussels in North America was facilitated by low predation rates from the existing native predators. At these predation rates and realistic goby abundance estimates, round goby could affect zebra mussel abundance in some lakes.  相似文献   

5.
6.
Synopsis Stunting in freshwater fish populations may be due to low availability of one or more prey components within their diet. If the limiting prey constitute a trophic level (i.e. zooplankton, benthos, or fish), we define the phenomenon as a trophic bottleneck. Growth of a non-stunted population of yellow perch, Perca flavescens, was simulated using an allocation model based on reported ontogenetic shifts in diet (planktivory to benthivory to piscivory). The model was then perturbed by limiting the available ration individually for each of the three feeding types. The resulting simulated growth curves all reflected lower growth rates than the unperturbed state and the shape of the curve differed between the limited food types. Only the reduced benthic ration produced a simulated growth that matched that observed for the stunted yellow perch of Lac Hertel (Québec). To test the hypothesis that benthic ration was limiting growth in Lac Hertel, all the fish species in the lake were sampled for diet composition and total length at age. We predicted that species feeding upon benthic invertebrates should exhibit the slow growth characteristic of stunting (based on the results of the allocation model). Of the seven fish species found in Lac Hertel, four were stunted: yellow perch, pumpkinseed, Lepomis gibbosus, rock bass, Ambloplites rupestris, and brown bullhead, Ictalurus nebulosus. Three species were non-stunted: northern pike, Esox lucius, golden shiner, Notemigonus crysoleucas, and white sucker, Catostomus commersoni. All stunted species fed on benthic invertebrates and all non-stunted species, except the white sucker, did not feed upon benthos. The prediction of the allocation model was thus supported.  相似文献   

7.
Block  Benjamin D.  Stockwell  Jason D.  Marsden  J. Ellen 《Hydrobiologia》2020,847(20):4325-4341

The seasonal energy dynamics of temperate fishes will likely be affected by climate change, especially during the winter. Few studies, however, have focused on winter. Fishes are more active in winter than previously thought, thus, an inquiry into the energetic contributions of winter foraging to the annual growth of fishes is needed given expected changes in winter conditions. We used stomach content data, total lipid analyses, and bioenergetics modeling to assess the effects of winter foraging on three species in Lake Champlain, Vermont, USA. We compared species in two thermal guilds, the cool-water species yellow perch (Perca flavescens) and two warm-water species, pumpkinseed (Lepomis gibbosus) and bluegill (Lepomis macrochirus). Our results indicate that winter energy dynamics likely depend on the thermal preference of individual fish species – the cool-water species foraged in all seasons whereas the two warm-water species foraged only in the open-water seasons. In addition, winter foraging provided sufficient energy for overwinter growth in cool-water species but not in warm-water species. Climate change will affect the seasonal energy dynamics that these species have evolved to survive winter conditions in temperate lakes. Thus, we expect climate change to affect individual survival and reproductive success.

  相似文献   

8.
Beekey MA  McCabe DJ  Marsden JE 《Oecologia》2004,141(1):164-170
The introduction of zebra mussels (Dreissena spp.) to North America has resulted in dramatic changes to the complexity of benthic habitats. Changes in habitat complexity may have profound effects on predator-prey interactions in aquatic communities. Increased habitat complexity may affect prey and predator dynamics by reducing encounter rates and foraging success. Zebra mussels form thick contiguous colonies on both hard and soft substrates. While the colonization of substrata by zebra mussels has generally resulted in an increase in both the abundance and diversity of benthic invertebrate communities, it is not well known how these changes affect the foraging efficiencies of predators that prey on benthic invertebrates. We examined the effect of zebra mussels on the foraging success of four benthic predators with diverse prey-detection modalities that commonly forage in soft substrates: slimy sculpin (Cottus cognatus), brown bullhead (Ameirus nebulosus), log perch (Percina caprodes), and crayfish (Orconectes propinquus). We conducted laboratory experiments to assess the impact of zebra mussels on the foraging success of predators using a variety of prey species. We also examined habitat use by each predator over different time periods. Zebra mussel colonization of soft sediments significantly reduced the foraging efficiencies of all predators. However, the effect was dependent upon prey type. All four predators spent more time in zebra mussel habitat than in either gravel or bare sand. The overall effect of zebra mussels on benthic-feeding fishes is likely to involve a trade-off between the advantages of increased density of some prey types balanced against the reduction in foraging success resulting from potential refugia offered in the complex habitat created by zebra mussels.  相似文献   

9.
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P<0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.  相似文献   

10.
The diet of the Iberian otter (Lutra lutra) was determined by analysing 547 spraints collected at 28 sites within a wide area invaded by centrarchid fishes (pumpkinseed sunfish, Lepomis gibbosus and largemouth bass, Micropterus salmoides): the middle Guadiana basin (South-west Iberian Peninsula). Fish was the otters’ main prey, representing more than 60% of total individuals and more than 80% of total biomass. Otters preyed on most of the fish species captured in the field; however, the consumption of centrarchids was low compared to their abundance in the streams, and Jacobs’ index of preference showed a clear rejection of both species by the otter. Consumption of native fish genera (Squalius, Barbus and Chondrostoma) by otters increased in relation to their increase in the environment. In contrast, increasing numbers of L. gibbosus in the field was not reflected in otter consumption. The general decline of native freshwater fishes in Iberian rivers, the preferred prey of otters, together with the spread of exotic fish species (centrarchids and others) could put otter populations at risk.  相似文献   

11.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

12.
R. D. Semlitsch 《Oecologia》1987,72(4):481-486
Summary Two species of salamander larvae (Ambystoma talpoideum and A. maculatum) were reared separately in the presence and absence of a fish (Lepomis macrochirus) in artificial ponds to measure the effects of a predator on the growth, survival, diet, and activity of larvae. The presence of L. macrochirus reduced body sizes of larvae by 18% in A. talpoideum and by 16% in A. maculatum. L. macrochirus apparently preyed on the smallest individuals. Survival in the presence of L. macrochirus decreased by 61% in A. talpoideum and by 97% in A. maculatum compared with larvae reared alone. Species identity did not significantly effect body size or survival, but an interaction effect suggested that A. maculatum was more severely affected by predators than was A. talpodeum. Activity of larvae in the water column was dramatically reduced in the presence of L. macrochirus, when larvae were restricted to the leaf litter of the benthic zone. There was overlap in the diets of fish and salamander larvae. Larvae reared in the presence of fish, however, consumed different taxa of prey as well as reduced number of prey compared to larvae reared alone. A. talpoideum larvae were more nocturnal than diurnal in the absence of fish, whereas A. maculatum larvae were equally active day and night. This experiment suggests that predator-prey relationships can change with shifts in species attributes and potentially confound apparent costs of predator avoidance with competition. Measuring the long-term dynamics of the cost-benefit relationship will help elucidate how prey balance the demands of their life history with the demands of predators.  相似文献   

13.
Daphnia lumholtzi comprises a substantial component of the zooplankton community during mid‐ to late‐summer in Lake Chautauqua, a floodplain lake along the Illinois River near Havana, Illinois. In order to quantify the utilization of D. lumholtzi by juvenile fishes, diet analyses were conducted for seven juvenile fish species collected from Lake Chautauqua during the 2001 annual drawdown period. Freshwater drum Aplodinotus grunniens and emerald shiner Notropis atherinoides demonstrated negative selectivity for D. lumholtzi relative to native zooplankton species whereas four species of fish (bluegill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis and black crappie Pomoxis nigromaculatus) consumed substantial amounts of D. lumholtzi. Although selectivity values for D. lumholtzi varied among these fish species, positive selection for D. lumholtzi increased similarly among larger size classes of each fish species, and corresponded with ontogenetic shifts in diet. Mean body length of D. lumholtzi consumed by 20–69 mm LT juvenile fishes ranged from 0·75 to 0·99 mm with a calculated total length range of 2·0–2·6 mm. Results from this study provide evidence that high abundances of D. lumholtzi in mid‐ to late‐summer provide an additional food source for several juvenile fish species during a time when abundances of large native cladoceran species (i.e. Daphnia) are low, and juvenile fishes are searching for larger prey associated with ontogenetic shifts from zooplankton to macroinvertebrates and fishes. Because zooplankton production is typically lower in rivers than in lakes, survivorship of juvenile fishes produced in floodplain lakes may be higher in riverine systems if they are not reliant on zooplankton as a primary food resource. Therefore, high abundances of D. lumholtzi may benefit juvenile fishes in managed floodplain lakes, such as Lake Chautauqua, by increasing growth and facilitating the transition from zooplanktivory to insectivory or piscivory.  相似文献   

14.
15.
David E. Wooster 《Oecologia》1998,115(1-2):253-259
Recent theoretical work suggests that predator impact on local prey density will be the result of interactions between prey emigration responses to predators and predator consumption of prey. Whether prey increase or decrease their movement rates in response to predators will greatly influence the impact that predators have on prey density. In stream systems the type of predator, benthic versus water-column, is expected to influence whether prey increase or decrease their movement rates. Experiments were conducted to examine the response of amphipods (Gammarus minus) to benthic and water-column predators and to examine the interplay between amphipod response to predators and predator consumption of prey in determining prey density. Amphipods did not respond to nor were they consumed by the benthic predator. Thus, this predator had no impact on amphipod density. In contrast, amphipods did respond to two species of water-column predators (the predatory fish bluegills, Lepomis macrochirus, and striped shiners, Luxilus chrysocephalus) by decreasing their activity rates. This response led to similar positive effects on amphipod density at night by both species of predatory fish. However, striped shiners did not consume many amphipods, suggesting their impact on the whole amphipod “population” was zero. In contrast, bluegills consumed a significant number of amphipods, and thus had a negative impact on the amphipod “population”. These results lend support to theoretical work which suggests that prey behavioral responses to predators can mask the true impact that predators have on prey populations when experiments are conducted at small scales. Received: 21 March 1997 / Accepted: 15 December 1997  相似文献   

16.
The diets of 99 pumpkinseed sunfish Lepomis gibbosus from a pair of small, adjacent lakes in Ontario, Canada, were estimated from their stomach contents, trophically transmitted parasites and stable isotopes of carbon and nitrogen in fish tissue. The three methods provided virtually unrelated information. There was no significant correlation in the importance of any prey item across all three methods. Fish with similar diets according to one method of estimating diet showed no tendency to be similar according to other methods. Although there was limited variation in fish size and the spatial scale of the study was small, both fish size and spatial origin showed comparatively strong associations with diet data obtained with all three methods. These results suggest that a multidisciplinary approach that accounts for fish size and spatial origins is necessary to accurately characterize diets of individual fish.  相似文献   

17.
The introduction of novel predators into an environment can have detrimental consequences on prey species, especially if these species lack the ability to recognize these predators. One such species that may be negatively affected by introduced predators is the federally threatened San Marcos salamander (Eurycea nana). Previous research found that predator‐naïve (captive‐hatched) salamanders showed decreased activity in response to the chemical cues of both a native fish predator (Micropterus salmoides) and an introduced fish predator (Lepomis auritus), but not to a non‐predatory fish (Gambusia geiseri). We tested the hypothesis that E. nana recognized the introduced Lepomis (and other non‐native Lepomis) because they share chemical cues with other native congeneric Lepomis predators in the San Marcos River. We examined the antipredator response of predator‐naïve E. nana to chemical cues from (1) a sympatric native sunfish (Lepomis cyanellus; Perciformes: Centrarchidae); (2) a sympatric introduced sunfish (L. auritus); (3) an allopatric sunfish (Lepomis gibbosus); (4) a sympatric non‐native, non‐centrarchid cichlid (Herichthys cyanoguttatum; Perciformes: Cichlidae); and (5) a blank water control to determine whether individuals make generalizations about novel predators within a genus and across a family. Exposure to chemical cues from all fish predator treatments caused a reduction in salamander activity (antipredator response). Additionally, there were no differences in the antipredator responses to each predatory fish treatment. The similar responses to all sunfish treatments indicate that E. nana shows predator generalization in response to novel predators that are similar to recognized predators. Additionally, the antipredator response to H. cyanoguttatum indicates that predator generalization can occur among perciform families.  相似文献   

18.
Synopsis Studies on the ontogeny of behaviour in fish have seldom considered the adaptive significance of the order of appearance of the behaviours. Results of laboratory studies and field observations on the ontogeny of feeding, predator-avoidance, and agonistic behaviour in largemouth bass, Micropterus salmoides, rock bass, Ambloplites rupestris, and pumpkinseed, Lepomis gibbosus, young indicate that the order of appearance of the various behavioural systems enhances the survival of the young. In the laboratory, all species spend significantly more time feeding during the first weeks of free-swimming than the later weeks. During a corresponding period in the field the young are either occupying an offshore area low in predators (rock bass, pumpkinseed) or are being guarded by a parent (largemouth bass); thus the risk of predation is low. When the young are in a predator-rich environment (inshore) both the predator-avoidance response and agonistic behaviour are well developed. Agonistic behaviour is the last to appear and may serve to disperse the young. Dispersal may relate to the feeding mode of the various species and may also reduce the probability of predation. It is apparent that the sequential onsets of the behavioural systems are in concert with ecological events and selective pressures confronting centarchid young.  相似文献   

19.
Understanding predator–prey interactions and food web dynamics is important for ecosystem-based management in aquatic environments, as they experience increasing rates of human-induced changes, such as the addition and removal of fishes. To quantify the post-stocking survival and predation of a prey fish in Lake Ontario, 48 bloater Coregonus hoyi were tagged with acoustic telemetry predation tags and were tracked on an array of 105 acoustic receivers from November 2018 to June 2019. Putative predators of tagged bloater were identified by comparing movement patterns of six species of salmonids (i.e., predators) in Lake Ontario with the post-predated movements of bloater (i.e., prey) using a random forests algorithm, a type of supervised machine learning. A total of 25 bloater (53% of all detected) were consumed by predators on average (± S.D. ) 3.1 ± 2.1 days after release. Post-predation detections of predators occurred for an average (± S.D. ) of 78.9 ± 76.9 days, providing sufficient detection data to classify movement patterns. Tagged lake trout Salvelinus namaycush provided the most reliable classification from behavioural predictor variables (89% success rate) and was identified as the main consumer of bloater (consumed 50%). Movement networks between predicted and tagged lake trout were significantly correlated over a 6 month period, supporting the classification of lake trout as a common bloater predator. This study demonstrated the ability of supervised learning techniques to provide greater insight into the fate of stocked fishes and predator–prey dynamics, and this technique is widely applicable to inform future stocking and other management efforts.  相似文献   

20.
We examined the seasonal diet of juvenile (≤32 mm total length) common bullies, Gobiomorphus cotidianus, in Lake Waihola, South Island, New Zealand and whether they preyed selectively on the amphipod, Paracalliope fluviatilis, which was a dominant prey item. Generally, ≥75% of all fish sampled had consumed amphipods, which comprised 80%, or more, of the total prey volumes in fish stomachs over most of a year except on one sampling occasion. Copepods, snails, chironomids, Daphnia, mysids and isopods also contributed to the diet. Comparisons of the size distribution of amphipods in fish stomachs and the lake on the date of sampling showed that on four occasions, juvenile bullies selectively consumed small amphipods. No selective feeding was detected on the other occasions. The dominance of primarily benthic amphipods in the diet of juvenile bullies which, in turn, are preyed on by piscivores, suggests a strong benthic-pelagic link in the transfer of energy in Lake Waihola. Handling editor: J. Cambray  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号