首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This study tested whether eutrophication could influence life‐history traits of a cyprinid, Chanodichthys erythropterus, in 10 Chinese lakes. Using the von Bertalanffy growth model, the asymptotic length (L) and the growth performance index (IGRO) were significantly affected by eutrophication. The gonado‐somatic index (IG) and relative fecundity (FR) were significantly lower in mesotrophic lakes than in eutrophic and hypertrophic lakes. These results indicate that increasing eutrophication affects the life‐history tactics of a freshwater fish.  相似文献   

2.
Kinnison MT  Quinn TP  Unwin MJ 《Heredity》2011,106(3):448-459
Size at age and age at maturity are important life history traits, affecting individual fitness and population demography. In salmon and other organisms, size and growth rate are commonly considered cues for maturation and thus age at maturity may or may not evolve independently of these features. Recent concerns surrounding the potential phenotypic and demographic responses of populations facing anthropogenic disturbances, such as climate change and harvest, place a premium on understanding the evolutionary genetic basis for evolution in size at age and age at maturity. In this study, we present the findings from a set of common-garden rearing experiments that empirically assess the heritable basis of phenotypic divergence in size at age and age at maturity in Chinook salmon (Oncorhynchus tshawytscha) populations introduced to New Zealand. We found consistent evidence of heritable differences among populations in both size at age and age at maturity, often corresponding to patterns observed in the wild. Populations diverged in size and growth profiles, even when accounting for eventual age at maturation. By contrast, most, but not all, cases of divergence in age at maturity were driven by the differences in size or growth rate rather than differences in the threshold relationship linking growth rate and probability of maturation. These findings help us understand how life histories may evolve through trait interactions in populations exposed to natural and anthropogenic disturbances, and how we might best detect such evolution.  相似文献   

3.
A central assumption of life history theory is that the evolution of the component traits is determined in part by trade-offs between these traits. Whereas the existence of such trade-offs has been well demonstrated, the relative importance of these remains unclear. In this paper we use optimality theory to test the hypothesis that the trade-off between present and future fecundity induced by the costs of continued growth is a sufficient explanation for the optimal age at first reproduction, alpha, and the optimal allocation to reproduction, G, in 38 populations of perch and Arctic char. This hypothesis is rejected for both traits and we conclude that this trade-off, by itself, is an insufficient explanation for the observed values of alpha and G. Similarly, a fitness function that assumes a mortality cost to reproduction but no growth cost cannot account for the observed values of alpha. In contrast, under the assumption that fitness is maximized, the observed life histories can be accounted for by the joint action of trade-offs between growth and reproductive allocation and between mortality and reproductive allocation (Individual Juvenile Mortality model). Although the ability of the growth/mortality model to fit the data does not prove that this is the mechanism driving the evolution of the optimal age at first reproduction and allocation to reproduction, the fit does demonstrate that the hypothesis is consistent with the data and hence cannot at this time be rejected. We also examine two simpler versions of this model, one in which adult mortality is a constant proportion of juvenile mortality [Proportional Juvenile Mortality (PJM) model] and one in which the proportionality is constant within but not necessarily between species [Specific Juvenile Mortality (SSJM) model]. We find that the PJM model is unacceptable but that the SSJM model produces fits suggesting that, within the two species studied, juvenile mortality is proportional to adult mortality but the value differs between the two species.  相似文献   

4.
    
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

5.
    
Atlantic bobtail squid (Sepiola atlantica) in northwest Spain show seasonal variation in population structure, with juvenile abundance peaking during summer and autumn. However, whether similar patterns exist for reproduction is unknown. Therefore, we describe the reproductive biology of 505 specimens of S. atlantica collected monthly during two consecutive years at two different sites off of Areamilla beach in the Ría de Vigo. Mature males displayed a type of sexual dimorphism previously unknown in members of this species, developing a muscular nodule in the base of each of the ventral arms over ontogeny. Reproductive output of both sexes was similar to that of other bobtail squids. Relative oocyte size (~10% mantle length) appeared to be similar to those of other bobtail squids. Females did not show evidence of having mated before complete maturity. Females of S. atlantica have group‐synchronous ovary maturation, with a positive correlation between female mantle length and ripe oocyte mass, suggesting a terminal investment strategy. Atlantic bobtail squids displayed the same seasonal patterns of reproductive traits at both sampling sites, with significant differences in reproductive activity between males and females. We consider reproductive traits in these small animals as adaptations to the coastal shelf lifestyle.  相似文献   

6.
    
Masting is defined as the intermittent highly variable production of seed in a plant population. According to reproductive modes, that is, sexual and asexual reproduction, masting species can be separated into three groups, that is, (1) species, for example, bamboo, flower only once before they die; (2) species, for example, Fagus, reproduce sexually; and (3) species, for example, Stipa tenacissima, reproduce both sexually and asexually. Several theories have been proposed to explore the underlying mechanisms of masting. However, to our knowledge, no theory has been found to explain the mechanism of masting species that reproduce both sexually and asexually. Here we refine the Resource Budget Model by considering a trade‐off between sexual and asexual reproduction. Besides the depletion efficient (i.e., the ratio of the cost of seed setting and the cost of flowering), other factors, such as the annual remaining resource (i.e., the rest of the resource from the photosynthetic activity after allocating to growth and maintenance), the trade‐off between sexual and asexual reproduction, and the reproductive thresholds, also affect masting. Moreover, two potential reproductive strategies are found to explain the mechanisms: (1) When the annual remaining resource is relatively low, plants reproduce asexually and a part of the resource is accumulated as the cost of asexual reproduction is less than the annual remaining resource. Plants flower and set fruits once the accumulated resource exceeds the threshold of sexual reproduction; (2) when the annual remaining resource is relatively high, and the accumulated resource surpasses the threshold of sexual reproduction, masting occurs. Remarkably, under certain depletion efficient, more investigation in sexual reproduction will lead plants to reproduce periodically. Additionally, plants investigate less resource to reproduce periodically when depletion efficient keeps increasing as plants can reproduce efficiently. Overall, our study provides new insights into the interpretation of masting, especially for species that reproduce both sexually and asexually.  相似文献   

7.
    
The Beta species complex shows a gradient of life histories from pronounced semelparity (big‐bang reproduction) to pronounced iteroparity (repeated reproduction). Models assume a trade‐off between investment in reproduction and survival. Reproductive effort is thought to increase with decreasing life span, and to be invariable in semelparous plants and susceptible to environmental conditions in iteroparous plants. These assumptions and hypotheses were verified by a greenhouse experiment testing six different life cycles at three contrasting nutrient levels. This study suggests that reproductive effort is negatively correlated with mean life span along the life‐cycle gradient. Unlike semelparous beets, reproductive effort in iteroparous beets is extremely sensitive to nutrient level. Phenotypic correlation between allocation to reproduction and allocation to survival generally appeared significantly negative in the longest‐lived iteroparous beets, nonsignificant in intermediate life histories and obviously positive in semelparous beets (no trade‐off control).  相似文献   

8.
Reproduction, a basic property of biological life, entails costs for an organism, ultimately detectable as reduction in survival prospects. Telomeres are an excellent candidate biomarker for explaining these reproductive costs, because their shortening correlates with increased mortality risk. For similar reasons, telomeres are perceived as biomarkers of individual “quality.” The relationship between reproduction and telomere dynamics is reviewed, emphasizing that cost and quality perspectives, commonly presented in isolation, should be integrated. While a majority of correlative studies have confirmed the relationship between telomere dynamics and various reproductive outputs, only limited experimental support exists showing that reproduction causes telomeres to shorten. A shift of focus to experimental manipulations of reproductive effort/telomere dynamics is crucial. However, the observation of survival reduction in response to these manipulations is essential for establishing telomeres as genuine biomarkers, allowing to unravel trade‐offs related to reproduction.  相似文献   

9.
    
In seasonal environments with limited time and energy resources, double‐brooded birds face trade‐offs in the timing of their two reproductive attempts and in the effort allocated to the first and the second broods. In the Barn Swallow Hirundo rustica a long care period for the first brood enhances the survival of first‐brood chicks, but also delays the start of the second brood, which in turn reduces the survival prospects of second‐brood chicks. Probably as a response to this trade‐off, double‐brooded Barn Swallows reduce the period of post‐fledging care for first‐brood fledglings. By radiotracking whole families, we investigated the determinants of this behaviour and its consequences for the survival of the first‐brood fledglings. The end of the females’ investment in post‐fledging care of the first brood was related to the beginning of egg synthesis for the second clutch. With the start of egg synthesis, females significantly reduced provisioning rates to the first‐brood fledglings to less than one‐fifth of the previous rates, while the proportion of time they spent foraging remained high. Assuming that the females’ foraging success was constant, we conclude that their energy income was allocated to egg production rather than fledgling provision. Males did not compensate for the females’ reduced feeding rates. Thus the start of egg production for the second clutch had a marked effect on the quantity of food received by first‐brood fledglings. In parallel with the changes in parental behaviour and provisioning rates, we observed a marked drop in the daily survival rate of first‐brood chicks. These results support the hypothesis that females face a strong trade‐off in the allocation of energy to subsequent broods. Energy allocation to a second clutch involves a cost in terms of reduced provisioning, and as a result the survival of first‐brood chicks is compromised. This is probably outweighed by the improved success of an early second brood.  相似文献   

10.
1. Five populations of Peromyscus maniculatus borealis (Mearns) were live-trapped in the Kananaskis Valley, Alberta, throughout the breeding seasons of 1996 and 1997, to test the hypothesis that growth and maturation of young-of-the-year (YY) females are limited by dietary protein.
2. In 1996, two populations received a high protein (30%) food supplement, one received a high energy, but low protein (14%) food supplement and two others were unsupplemented. In 1997, three populations received the protein (30%) supplement and two served as controls.
3. In 1996, control populations had high nestling growth rates and many (43%) YY females bred. In 1997, nestling growth rates were lower in control populations and no YY females bred.
4. Supplementation of high protein food resulted in consistently high nestling growth rates in both 1996 and 1997, and a significantly higher proportion of YY females bred than controls in both years.
5. Supplementation of high energy, but low protein food had no effect on YY growth or maturation.
6. Neither protein nor energy supplementation had any effects on the number of litters conceived per season, litter success, litter size or sex ratio of litters born to over-wintered females.
7. We conclude that growth and maturation of YY female Peromyscus maniculatus in this area are limited by the availability of dietary protein.  相似文献   

11.
    
The interplay between individual adaptive life histories and populations dynamics is an important issue in ecology. In this context, we considered a seasonal consumer-resource model with nonoverlapping generations. We focused on the consumers decision-making process through which they maximize their reproductive output via a differential investment into foraging for resources or reproducing. Our model takes a semi-discrete form, and is composed of a continuous time within-season part, similar to a dynamic model of energy allocation, and of a discrete time part, depicting the between seasons reproduction and mortality processes. We showed that the optimal foraging-reproduction strategies of the consumers may be \"determinate\" or \"indeterminate\" depending on the season length. More surprisingly, it depended on the consumers population density as well, with large densities promoting indeterminacy. A bifurcation analysis showed that the long-term dynamics produced by this model were quite rich, ranging from both populations' extinction, coexistence at some season-to-season equilibrium or on (quasi)-periodic motions, to initial condition-dependent dynamics. Interestingly, we observed that any long-term sustainable situation corresponds to indeterminate consumers' strategies. Finally, a comparison with a model involving typical nonoptimal consumers highlighted the stabilizing effects of the optimal life histories of the consumers.  相似文献   

12.
    
Reproductive parameters of 168 franciscana dolphins, Pontoporia blainvillei (73 females and 95 males) incidentally caught (n = 163) or stranded (n = 5) between 2005 and 2016 in southeastern Brazil are presented. Ovarian macroscopic analysis revealed 55 immature (75.3%) and 18 mature (24.7%) females. Annual pregnancy rate was estimated to be 0.36, with a calving interval of 2.8 years. Testicular histology revealed 66 immature (69.5%) and 29 mature (30.5%) males. Males with combined testis weight above 4 g were mature, and 1-year-old mature males and a 2-year-old pregnant female are reported for the first time for the species. Reproductive seasonality does not seem to occur in the study area. Mean age and length at sexual maturation were estimated to be at 2.7 years and 128.5 cm for females, and 2.7 years and 114.0 cm for males. These estimates are lower than most of the estimates for this species. These results add novel and valuable information on the reproductive patterns of this endangered species, threatened by high levels of mortality in gill net fisheries. The information presented here represents an important effort to obtain more reliable parameter estimates for the studied area, needed for a better assessment of its current conservation status.  相似文献   

13.
14.
    
Ageing and the resulting increased likelihood mortality are the inescapable fate of organisms because selection pressures on genes that exert their function late in life is weak, promoting the evolution of genes that enhance early‐life reproductive performance at the same time as sacrificing late survival. Heat shock proteins (HSP) are known to buffer various environmental stresses and are also involved in protein homeostasis and longevity. The characteristics of genes for HSPs (hsp) imply that they affect various life‐history traits, which in turn affect longevity; however, little is known about the effects of hsp genes on life‐history traits and their interaction with longevity. In the present study, the effects of hsp genes on multiple fitness traits, such as locomotor activity, total fecundity, early fecundity and survival time, are investigated in Drosophila melanogaster Meigen using RNA interference (RNAi). In egg‐laying females, RNAi knockdown of six hsp genes (hsp22, hsp23, hsp67Ba, hsp67Bb, hsp67Bc and hsp27‐like) does not shorten survival but rather increases it. Knockdown of five of those genes on an individual basis reduces early‐life reproduction, suggesting that several hsp genes mediate the trade‐off between early reproduction and late survival. The data indicate a positive effect of hsp genes on early reproduction and also negative effects on survival time, supporting the antagonistic pleiotropic effects predicted by the optimality theory of ageing.  相似文献   

15.
    
Varied nutrient sources can influence the plasticity of reproductive strategies in monoecious species differently. We examined the plasticity of sexual and clonal reproductive components in distinct nutrient sources in a monoecious species, Sagittaria graminea Michx. The results showed that for aboveground reproductive components, in rich-phosphorus and low-nitrogen conditions, the species produced more male flowers, whereas female flowers did not significantly increase in number compared to low-phosphorus and low-nitrogen conditions (control). In rich-nitrogen and low-phosphorus conditions, the species produced more flowers, particularly female, and more seeds, compared to the control conditions. In the rich-nitrogen and rich-phosphorus conditions, plants increased male flowers, female flowers, total flower number, synchronously, as well as seed production. For the belowground reproductive components, in the rich-phosphorus conditions, the plants produced bigger corms than in the rich-nitrogen and control conditions, which further enhanced their competitiveness against companion species. In rich-nitrogen conditions, the plants produced more medium and small corms, and relatively more and longer stolons, which were useful in expansion and invasion of more space. Furthermore, the species displayed trade-off relationships between the aboveground and belowground reproductive components in unbalanced nutrient conditions (add-N or add-P). However, in low nutrient levels (control) or in nutrient abundant (add-N + P) conditions, there were no significant trade-off relationships between the aboveground and belowground reproductive components, based on quantities.  相似文献   

16.
Synopsis We determined age and growth, size at maturity, and fecundity for cownose rays, Rhinoptera bonasus, collected from the northern Gulf of Mexico. Vertebral age estimates ranged from 0+ to 18+ years for females and 0+ to 16+ years for males. Annual deposition of growth increments was verified with marginal increment analysis. Likelihood ratio tests indicated that the growth of the cownose ray was best described by a combined sexes Gompertz model. Median size at 50% maturity was determined to be 642 mm DW for males and 653 mm DW for females, or 4–5 years of age. Median pup size-at-birth was estimated to be 350 mm DW, with a gestation period of 11–12 months. In all cases, gravid females contained only one pup. Statistically significant differences were detected between growth curves for the Gulf of Mexico and the western Atlantic Ocean. Cownose rays in the Gulf of Mexico had lower estimates of DW and K, and a higher theoretical longevity than their conspecifics in the western Atlantic Ocean. Cownose rays in the Gulf of Mexico also attain maturity at a smaller size and earlier age than their counterparts in the western Atlantic Ocean.  相似文献   

17.
Parasites take their resources from hosts and thus directly reduce available resources for hosts’ own body functions, such as growth and reproduction. Furthermore, parasite infections cause significant indirect costs to their hosts in terms of increased investments on immune defense. In this study, we investigated the impact of parasite infection on the sperm quality and expression of secondary sexual ornamentation (saturation of the red abdominal colouration and number of breeding tubercles) in the Eurasian minnow (Phoxinus phoxinus). We exposed minnows to a high and low dose of common nonspecific fish ectoparasite, the glochidia larvae of duck mussel (Anodonta anatina) and tested whether parasite infection leads to trade‐off in sperm quality and/or ornamental expression. We found that glochidia infection reduces the curvature of the sperm swimming trajectory, number of breeding tubercles, and possibly male competitive ability, but does not affect expression of male color ornamentation. Furthermore, glochidia infection was found to reduce sperm motility, but only when all the noninfected individuals were excluded from the model. Supporting one of the predictions by phenotype‐linked fertility hypothesis both in high‐infection and low‐infection group male breeding colouration was positively associated with sperm quality. Our results suggest that although glochidia infection may have negative impact on male reproductive success, parasite‐induced costs may not create strong trade‐off between breeding colouration and sperm quality or that such trade‐off become detectable only in resource‐limited conditions.  相似文献   

18.
Reproduction entails costs, and disentangling the relative importance of each stage of the reproductive cycle may be important to assess the costs and benefits of different reproductive strategies. We studied the early costs of reproduction in oviparous and viviparous lizard females of the bimodal reproductive species Zootoca vivipara. Egg retention time in oviparous females is approximately one-third of the time in viviparous females. We compared the vitellogenesis and egg retention stages that are common to both reproductive modes. Precisely, we monitored the thermoregulatory behaviour, the weight gain and the immunocompetence of the females. Moreover, we injected an antigen in half of the females (immune challenge) to study the trade-offs between reproductive mode and immune performance and between different components of the immune system. Finally, we experimentally induced parturition in viviparous females at the time of egg laying in oviparous females. Oviparous and viviparous females did not show strong differences in response to the immune challenge. However, viviparous females spent more time thermoregulating while partially hidden and gained more weight than oviparous females. The greater weight gain indicates that the initial period of egg retention is less costly for viviparous than for oviparous females or that viviparous females are able to save and accumulate energy at this period. This energy may be used by viviparous females to cope with the subsequent costs of the last two-third of the gestation. Such an ability to compensate the higher costs of a longer egg retention period may account for the frequent evolution of viviparity in squamate reptiles.  相似文献   

19.
    
Two Australian endemic elasmobranchs, the Argus skate Dipturus polyommata and the eastern spotted gummy shark Mustelus walkeri, were collected from the by‐catch of a prawn Melicertus plebejus trawl fishery off Queensland. Age and growth parameters were estimated from growth band counts in vertebral sections of 220 D. polyommata and 44 M. walkeri. Dipturus polyommata males and females had an observed maximum age of 10 years and reached maximum sizes of 369 and 371 mm total length (LT), respectively. Mustelus walkeri lived longer, with the oldest female aged 16 years and measuring 1050 mm stretched total length (LST), and oldest male aged 9 years and 805 mm LST. Dipturus polyommata grew relatively fast with a von Bertalanffy growth completion parameter of k = 0·208 year?1 with males reaching maturity at 4·0 years (c. 278 mm LT) and females at 5·1 years (c. 305 mm LT). Mustelus walkeri grew more slowly with k = 0·033 year?1 with males estimated to mature at 7–9 years (670–805 mm LST) and females at 10–14 years (833–1012 mm LST). Length at birth inferred from neonate D. polyommata was 89–111 mm LT while for M. walkeri it was estimated to be 273 LST based on the value of L0 from the von Bertalanffy growth model. Both species appeared to have continuous reproductive cycles and low fecundity with an average ovarian fecundity of eight follicles for D. polyommata and a litter size of five to seven pups for M. walkeri. Based on these life‐history traits, D. polyommata is more resilient to fishing pressure than M. walkeri.  相似文献   

20.
A trade‐off between reproduction and somatic maintenance and hence survival is fundamental to life‐history theory. We investigated the relationship between female fecundity and longevity in Homo sapiens using data from 153 countries located all over the world. The raw correlation between life span and fecundity was highly significant with a negative trend. After longevity and fecundity estimates were controlled for by confounding factors such as historical (i.e. human ethnic groups), religious, geographical, socio‐economical and parasitological components, we still observed a negative relationship between the mean female fecundity and the mean longevity in a country. These findings support the hypothesis for the existence of a trade‐off between these two key life‐history traits in humans, as also reported by a recent single longitudinal study in England.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号