首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of prey to recognize and adequately respond to predators determines their survival. Predator‐borne, post‐digestion dietary cues represent essential information for prey about the identity and the level of risk posed by predators. The phylogenetic relatedness hypothesis posits that prey should respond strongly to dietary cues from closely related heterospecifics but respond weakly to such cues from distantly related prey, following a hierarchical pattern. While such responses have mostly been observed in prey at their first encounter with predators, whether prey maintain such hierarchical levels of investment through time remains unclear. We investigated this question by exposing Rhacophorus arboreus tadpoles to the non‐consumptive effect of gape‐limited newt predators Cynops pyrrhogaster that were fed one of five prey diets across a gradient of phylogenetic relatedness: frog tadpoles (Rhacophorus arboreus, Rhacophorus schlegelii, Pelophylax nigromaculatus, and Hyla japonica) and medaka fish (Oryzias latipes). Predators’ diet, time, and their interaction significantly influenced tadpole activity level. We found support for the phylogenetic relatedness hypothesis: Investments in defense were stronger to cues from tadpole diets than to cues from fish diet. However, such a hierarchical response was recorded only in the first four days following predator exposure, then gradually disappear by day 8 on which the tadpoles exhibited similar activity level across all predator treatments. The findings suggest that, at least under the threat of gape‐limited predators, prey use phylogenetic information to evaluate risk and appropriately invest in defense during early encounters with predators; however, energy requirements may prevent prey from maintaining a high level of defense over long exposure to predation risk.  相似文献   

2.
In group‐living species, the degree of relatedness among group members often governs the extent of reproductive sharing, cooperation and conflict within a group. Kinship among group members can be shaped by the presence and location of neighbouring groups, as these provide dispersal or mating opportunities that can dilute kinship among current group members. Here, we assessed how within‐group relatedness varies with the density and position of neighbouring social groups in Neolamprologus pulcher, a colonial and group‐living cichlid fish. We used restriction site‐associated DNA sequencing (RADseq) methods to generate thousands of polymorphic SNPs. Relative to microsatellite data, RADseq data provided much tighter confidence intervals around our relatedness estimates. These data allowed us to document novel patterns of relatedness in relation to colony‐level social structure. First, the density of neighbouring groups was negatively correlated with relatedness between subordinates and dominant females within a group, but no such patterns were observed between subordinates and dominant males. Second, subordinates at the colony edge were less related to dominant males in their group than subordinates in the colony centre, suggesting a shorter breeding tenure for dominant males at the colony edge. Finally, subordinates who were closely related to their same‐sex dominant were more likely to reproduce, supporting some restraint models of reproductive skew. Collectively, these results demonstrate that within‐group relatedness is influenced by the broader social context, and variation between groups in the degree of relatedness between dominants and subordinates can be explained by both patterns of reproductive sharing and the nature of the social landscape.  相似文献   

3.
The successful management of a captive gorilla population often necessitates the hand‐rearing of infants and their subsequent re‐integration into social groups of conspecifics. In the present study we quantified the changes in nearest‐neighbor associations in a group consisting of a silverback male, three adult females, and two sub‐adult females after the introduction of five hand‐reared infants. Additionally, we examined the associations among kin and non‐kin group members to determine whether genetic relatedness was a factor influencing the integration of the infants into the group and the subsequent patterns of association among infants and adults. Results showed that after the introduction, the silverback male spent >60% of his time in close proximity to an infant and 10% of his time within a “cluster” of infants. There was a significant change in a female's nearest‐neighbor associations; however, the change did not include an infant. The most significant finding among infants was a strong bias by each to associate with another infant. When the infants associated with an adult, three of the five associated most with the silverback male (P < 0.001), whereas the other two infants distributed their time among all the adults. The most significant change in behavior patterns was exhibited by one of the sub‐adult females who displayed parental behaviors 18% of the time compared to <1% for all other females. Adults and one sub‐adult female associated significantly more often with related infants compared to unrelated infants (P < 0.025), and the infants showed a bias to associate with another related infant (P < 0.0001). Results of an infant's association with an adult showed that three of the five infants preferred to associate with a related adult (P < 0.0001). An individual's age, sex, and behavioral profile may have also influenced association patterns among group members. These findings lend strong support to the importance of peer groups and the presence of a silverback male for facilitating the integration of hand‐reared infants into established adult groups. Zoo Biol 18:261–278, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
In many cooperatively breeding species, females mate extra‐group, the adaptive value of which remains poorly understood. One hypothesis posits that females employ extra‐group mating to access mates whose genotypes are more dissimilar to their own than their social mates, so as to increase offspring heterozygosity. We test this hypothesis using life history and genetic data from 36 cooperatively breeding white‐browed sparrow weaver (Plocepasser mahali) groups. Contrary to prediction, a dominant female's relatedness to her social mate did not drive extra‐group mating decisions and, moreover, extra‐group mating females were significantly more related to their extra‐group sires than their social mates. Instead, dominant females were substantially more likely to mate extra‐group when paired to a dominant male of low heterozygosity, and their extra‐group mates (typically dominants themselves) were significantly more heterozygous than the males they cuckolded. The combined effects of mating with extra‐group males of closer relatedness, but higher heterozygosity resulted in extra‐group‐sired offspring that were no more heterozygous than their within‐group‐sired half‐siblings. Our findings are consistent with a role for male–male competition in driving extra‐group mating and suggest that the local kin structure typical of cooperative breeders could counter potential benefits to females of mating extra‐group by exposing them to a risk of inbreeding.  相似文献   

5.
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short‐lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle‐aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age‐related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β‐catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish.  相似文献   

6.
Parasite transmission strategies strongly impact host–parasite co‐evolution and virulence. However, studies of vector‐borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high‐throughput sequencing to develop microsatellites for malaria‐like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph‐specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector‐mediated parent‐to‐offspring transmission. The conditions for such ‘quasi‐vertical’ transmission may be common and could suppress the evolution of pathogen virulence.  相似文献   

7.
Conflict between males and females over whether, when, and how often to mate often leads to the evolution of sexually antagonistic interactions that reduce female reproductive success. Because the offspring of relatives contribute to inclusive fitness, high relatedness between rival males might be expected to reduce competition and result in the evolution of reduced harm to females. A recent study investigated this possibility in Drosophila melanogaster and concluded that groups of brothers cause less harm to females than groups of unrelated males, attributing the effect to kin selection. That study did not control for the rearing environment of males, rendering the results impossible to interpret in the context of kin selection. Here, we conducted a similar experiment while manipulating whether males developed with kin prior to being placed with females. We found no difference between related and unrelated males in the harm caused to females when males were reared separately. In contrast, when related males developed and emerged together before the experiment, female reproductive output was higher. Our results show that relatedness among males is insufficient to reduce harm to females, while a shared rearing environment – resulting in males similar to or familiar with one another – is necessary to generate this pattern.  相似文献   

8.
Identifying patterns of larval dispersal within marine metapopulations is vital for effective fisheries management, appropriate marine reserve design, and conservation efforts. We employed genetic markers (microsatellites) to determine dispersal patterns in bicolour damselfish (Pomacentridae: Stegastes partitus). Tissue samples of 751 fish were collected in 2004 and 2005 from 11 sites encompassing the Exuma Sound, Bahamas. Bayesian parentage analysis identified two parent–offspring pairs, which is remarkable given the large population sizes and 28 day pelagic larval duration of bicolour damselfish. The two parent–offspring pairs directly documented self‐recruitment at the two northern‐most sites, one of which is a long‐established marine reserve. Principal coordinates analyses of pair‐wise relatedness values further indicated that self‐recruitment was common in all sampled populations. Nevertheless, measures of genetic differentiation (FST) and results from assignment methods suggested high levels of gene flow among populations. Comparisons of heterozygosity and relatedness among samples of adults and recruits indicated spatially and temporally independent sweepstakes events, whereby only a subset of adults successfully contribute to subsequent generations. These results indicate that self‐recruitment and sweepstakes reproduction are the predominant, ecologically‐relevant processes that shape patterns of larval dispersal in this system.  相似文献   

9.
Eight hatchery‐reared Atlantic salmon Salmo salar post‐smolts, implanted with acoustic depth sensing transmitters and manually tracked for 5–12 h in the Hardangerfjord (Norway), spent most of their time (49–99%) at 1–3 m depth during the day, whereas four of seven fish tracked were found close (<0·5 m) to the surface at night, with a strong negative cross‐correlation between general swimming depth and surface light intensity. Hence, the actual swimming depth of post‐smolts during their early marine migration may depend on the light conditions, although the individual variation in vertical movement pattern was large. No cross‐correlations were found between light intensity and swimming depth during daytime periods with rapid changes in light intensity, indicating that other factors than light intensity were important in initiating the irregular dives that were recorded down to 6·5 m depth.  相似文献   

10.
Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg‐laying animals, among birds most often in species with large clutches and self‐feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female‐biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host–parasite (h‐p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h‐p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over‐represented in h‐p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h‐p relatedness was higher than between nesting close neighbours, and hosts parasitized by non‐relatives aggressively rejected other females. In another species, birth nest‐mates (mother–daughters, sisters) associated in the breeding area as adults, and became h‐p pairs more often than expected by chance. These and other results point to recognition of birth nest‐mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female‐biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin‐related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.  相似文献   

11.
Previous studies thought that at the within‐population level, whether a female bird engages in extra‐pair (EP) mating depends on how synchronous she is in breeding time with all other females around her, presumably the synchronization might affect the female's opportunities to meet potential EP sires who socially pair with these other females. However, when females or males are choosy about EP partners and mate with one EP individual only, the probability of EP mating may be most influenced by breeding synchrony between the EP partners. In such a case, the ‘individual‐level’ synchrony should act to determine EP mating success. We test this idea in a socially monogamous passerine, the ground tit Parus humilis. Fifty‐five out of 172 sampled females produced 122 EP offspring, each mating with one EP sire in most cases (92%), usually her intermediately‐related kin. As expected, the broader‐scale synchrony did not predict the probability of EP paternity but the individual‐level did, for females having EP offspring bred more synchronously with their EP than with their nearest neighbors, and females without EP offspring were least synchronous with their nearest neighbors. We argue that this kind of individual‐based approaches will shine light on the synchrony‐EP mating relationship in birds.  相似文献   

12.
Specialization for the use of different resources can lead to ecological speciation. Accordingly, there are numerous examples of ecologically specialized pairs of fish “species” in postglacial lakes. Using a polymorphic panel of single nucleotide variants, we tested for genetic footprints of within‐lake population stratification in nine‐spined sticklebacks (Pungitius pungitius) collected from three habitats (viz. littoral, benthic, and pelagic) within a northern Swedish lake. Analyses of admixture, population structure, and relatedness all supported the conclusion that the fish from this lake form a single interbreeding unit.  相似文献   

13.
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection.  相似文献   

14.
The relatedness structure of animal populations is thought to be a critically important factor underlying the evolution of mating systems and social behaviours. While previous work has shown that population structure is shaped by many biological processes, few studies have investigated how these factors vary over time. Consequently, we explored the fine‐scale spatiotemporal genetic structure of an intensively studied population of cooperatively breeding banded mongooses (Mungos mungo) over a 10‐year period. Overall population structure was strong (average FST = 0.129) but groups with spatially overlapping territories were not more genetically similar to one another than noncontiguous groups. Instead, genetic differentiation was associated with historical group‐fission (budding) events, with new groups diverging from their parent groups over time. Within groups, relatedness was high within but not between the sexes, although the latter increased over time since group formation due to group founders being replaced by philopatric young. This trend was not mirrored by a decrease in average offspring heterozygosity over time, suggesting that close inbreeding may often be avoided, even when immigration into established groups is virtually absent and opportunities for extra‐group matings are rare. Fine‐scale spatiotemporal population structure could have important implications in social species, where relatedness between interacting individuals is a vital component in the evolution of patterns of inbreeding avoidance, reproductive skew and kin‐selected helping and harming.  相似文献   

15.
The effects of a tropical cyclone on the distribution of hatchery‐reared black‐spot tuskfish Choerodon schoenleinii were examined using acoustic telemetry. Nine fish were released in Urasoko Bay, Ishigaki Island, Japan, in September 2006, and another nine were released in June to July 2007, before a cyclone's passing through the area in September 2007. Data for the fish released in 2006 were used as the cyclone‐inexperienced group to compare their distribution pattern to that of the 2007 cyclone‐experienced group. Both groups of fish were monitored for up to 150 days. Of the nine fish in each group, four (44%) and two (22%) were monitored for over 150 days in the cyclone‐inexperienced and the cyclone‐experienced groups, respectively. Three of the five fish that had settled in the monitoring area left the area within a few days of the cyclone event. To estimate the time of disappearance of the fish, maximum wind speed during a period of 7 days (indicating the occurrence and intensity of the tropical cyclone), fish size and release year were evaluated as explanatory variables using a Cox proportional hazards model with Akaike's information criterion. The best predictive model included the effect of maximum wind speed. One fish that left the monitoring area displayed movement patterns related to strong winds, suggesting that wind‐associated strong currents swept the fish away. No relationships were found between the movement patterns of the other two fish and any physical environmental data. The daily detection periods of one of the two fish gradually decreased after the cyclone hit, and this fish eventually left the monitoring area within 3 days, suggesting that it shifted to a habitat outside the monitoring area. These results indicate that tropical cyclones have both direct and indirect effects on the distribution of hatchery‐reared C. schoenleinii.  相似文献   

16.
17.
Artibeus jamaicensis is one of the most common bat species in the neotropics, with a well‐defined polygynous social structure in caves. In order to study behaviour and to examine patterns of paternity and relatedness between different harem groups, we developed 14 microsatellite loci from two different enriched genomic libraries. We screened 125 individuals from two different bat colonies and found that polymorphism ranged from five to 13 alleles. Heterozygosity ranged from 63 to 95%. The primers amplified across 14 bat species, indicating their potential utility for population‐level studies in several closely related bat species.  相似文献   

18.
Detailed information about space use during the breeding season is limited for most Nearctic‐Neotropical migratory species of songbirds because of their small size and often cryptic behaviors. We monitored male Cerulean Warblers (Setophaga cerulea), a species of conservation concern, using radio‐telemetry during the 2006–2008 breeding seasons in northern Alabama to better understand their space use and habitat selection. We estimated diurnal home range and core areas using information theoretic criteria, located nocturnal roost sites, and related day and evening locations to surrounding landscape habitat, including features representative of canopy disturbances. Mean home range size was 6.7 ha (= 10), and home ranges included an average of at least 2 core areas encompassing 0.7 ha. We located 53 nocturnal roost sites that were an average 159.0 m from the center of the nearest core area. More than one‐third (36.6%) of roost sites were located outside the diurnal home ranges of male Cerulean Warblers; only 13.6% were located in core areas. Males in our study moved much farther than reported in previous studies, with some singing in areas > 300 m from previously used song perches, a behavior suggesting pursuit of extra‐pair copulations. Cerulean Warblers in our study preferentially selected a heavily forested landscape composed of mesic, floodplain bottomlands with little man‐made disturbance. Within their home ranges, diurnal locations of males in core areas were located significantly closer to a creek than locations outside of core areas. Our results suggest that male Cerulean Warblers require much larger areas than previously reported and underscore the importance of a predominately forested landscape in their habitat selection process. Although edge habitats appeared to influence space use by male Cerulean Warblers in our study, the extent to which this is an essential requirement is unclear. Our results and those of previous studies suggest that specific habitat requirements of this species can vary at the local scale throughout its breeding range.  相似文献   

19.
Sichuan taimen (Hucho bleekeri) is critically endangered fish listed in The Red List of Threatened Species compiled by the International Union for Conservation of Nature (IUCN). Specific locus amplified fragment sequencing (SLAF‐seq)‐based genotyping was performed for Sichuan taimen with 43 yearling individuals from three locations in Taibai River (a tributary of Yangtze River) that has been sequestered from its access to the ocean for more than 30 years since late 1980s. Applying the inbreeding level and genetic relatedness estimation using 15,396 genome‐wide SNP markers, we found that the inbreeding level of this whole isolated population was at a low level (2.6 × 10?3 ± 0.079), and the means of coancestry coefficients within and between the three sampling locations were all very low (close to 0), too. Genomic differentiation was negatively correlated with the geographical distances between the sampling locations (p < .001), and the 43 individuals could be considered as genetically independent two groups. The low levels of genomic inbreeding and relatedness indicated a relatively large number of sexually mature individuals were involved in reproduction in Taibai River. This study suggested a genomic‐relatedness‐guided breeding and conservation strategy for wild fish species without pedigree information records.  相似文献   

20.
《Theriogenology》2013,79(9):2105-2109.e1
Studying mate choice at the gamete level can provide valuable insights into proximate mechanisms that underlie the evolution of mating systems. The objective was to assess whether ovarian fluid enhances sperm performance based on relatedness of mates in lake trout, Salvelinus namaycush, an iteroparous salmonid. Twelve trios were used, each composed of a female and two male fish; one male was related (full sibling) to the female, whereas the other was unrelated. Sperm from each male was activated in hatchery water or ovarian fluid from each corresponding female. No significant difference in sperm velocity was detected between the related and unrelated male fish when activated in hatchery water. However, when sperm was activated in ovarian fluid, sperm velocity from the related male was significantly higher than that of the unrelated male fish. Overall, ovarian fluid enhanced sperm performance of related male fish and might act as part of a recognition system to select sperm of a specific genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号