首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The black‐tailed prairie dog (Cynomys ludovicianus) is a keystone species on the mid‐ and short‐grass prairies of North America. The species has suffered extensive colony extirpations and isolation as a result of human activity including the introduction of an exotic pathogen, Yersinia pestis, the causative agent of sylvatic plague. The prairie dog flea, Oropsylla hirsuta, is the most common flea on our study colonies in north‐central Montana and it has been shown to carry Y. pestis. We used microsatellite markers to estimate the level of population genetic concordance between black‐tailed prairie dogs and O. hirsuta in order to determine the extent to which prairie dogs are responsible for dispersing this potential plague vector among prairie dog colonies. We sampled fleas and prairie dogs from six prairie dog colonies in two regions separated by about 46 km. These colonies were extirpated by a plague epizootic that began months after our sampling was completed in 2005. Prairie dogs showed significant isolation‐by‐distance and a tendency toward genetic structure on the regional scale that the fleas did not. Fleas exhibited higher estimated rates of gene flow among prairie dog colonies than the prairie dogs sampled from the same colonies. While the findings suggested black‐tailed prairie dogs may have contributed to flea dispersal, we attributed the lack of concordance between the population genetic structures of host and ectoparasite to additional flea dispersal that was mediated by mammals other than prairie dogs that were present in the prairie system.  相似文献   

2.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

3.
Epizootic outbreaks of sylvatic plague have dramatically influenced prairie dog (Cynomys sp.) populations across North America. While a great deal of debate surrounds the cause and persistence of plague, flea control can stop the spread of plague epizootic outbreaks and even increase prairie dog survival under non‐epizootic conditions. We investigated a newly‐developed imidacloprid‐treated grain bait that could potentially reduce flea infestations and mitigate the effects of plague on black‐tailed prairie dogs (C. ludovicianus). We used a study design involving randomly assigned experimental and control study plots to assess the effectiveness of the systemic flea control product. We observed a significant difference in flea prevalence and abundance between experimental and control sites on three of the four sites treated with a single application of imidacloprid‐treated grain bait for up to 90 days post‐treatment. We observed an even greater reduction in flea infestations following the double application of treatment bait on two of three additional experimental sites. While we were unable to reduce flea infestations to the extent reported for more commonly used topical insecticides containing deltamethrin, imidacloprid might still be effective at reducing the risk of plague and halting epizootics. In addition, this systemic product can be more rapidly applied than topical insecticides, providing managers with a tool to quickly reduce flea infestations. Future research is needed to evaluate the effectiveness of different application timing and rates, the utility of the product in limiting plague, and the potential effects on non‐target species that might also consume the treated bait.  相似文献   

4.
Climate may affect the dynamics of infectious diseases by shifting pathogen, vector, or host species abundance, population dynamics, or community interactions. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to plague, yet little is known about factors that influence the dynamics of plague epizootics in prairie dogs. We investigated temporal patterns of plague occurrence in black-tailed prairie dogs to assess the generality of links between climate and plague occurrence found in previous analyses of human plague cases. We examined long-term data on climate and plague occurrence in prairie dog colonies within two study areas. Multiple regression analyses revealed that plague occurrence in prairie dogs was not associated with climatic variables in our Colorado study area. In contrast, plague occurrence was strongly associated with climatic variables in our Montana study area. The models with most support included a positive association with precipitation in April–July of the previous year, in addition to a positive association with the number of “warm” days and a negative association with the number of “hot” days in the same year as reported plague events. We conclude that the timing and magnitude of precipitation and temperature may affect plague occurrence in some geographic areas. The best climatic predictors of plague occurrence in prairie dogs within our Montana study area are quite similar to the best climatic predictors of human plague cases in the southwestern United States. This correspondence across regions and species suggests support for a (temperature-modulated) trophic-cascade model for plague, including climatic effects on rodent abundance, flea abundance, and pathogen transmission, at least in regions that experience strong climatic signals.  相似文献   

5.
Bubonic plague (Yersinia pestis) is a deadly zoonosis with black‐tailed prairie dogs (Cynomys ludovicianus) as a reservoir host in the United States. Systemic insecticides are a promising means of controlling the vectors, Oropsylla spp. fleas, infesting these prairie dogs, subsequently disrupting the Y. pestis cycle. The objective of this study was to conduct a field trial evaluating the efficacy of a grain rodent bait containing fipronil (0.005%) against fleas infesting prairie dogs. The study was performed in Larimer County, CO, where bait was applied to a treatment area containing a dense prairie dog population, three times over a three‐week period. Prairie dogs were captured and combed for fleas during four study periods (pre‐, mid‐, 1st post‐, and 2nd post‐treatment). Results indicated the use of bait containing fipronil significantly reduced flea burden. The bait containing fipronil was determined to reduce the mean number of fleas per prairie dog >95% for a minimum of 52 days post‐initial treatment application and 31 days post‐final treatment application. These results suggest the potential for this form of treatment to reduce flea population density on prairie dogs, and subsequently plague transmission, among mammalian hosts across the United States and beyond.  相似文献   

6.
Samuel  Michael D.  Poje  Julia E.  Rocke  Tonie E.  Metzger  Marco E. 《EcoHealth》2022,19(3):365-377

Fleas are common ectoparasites of vertebrates worldwide and vectors of many pathogens causing disease, such as sylvatic plague in prairie dog colonies. Development of fleas is regulated by environmental conditions, especially temperature and relative humidity. Development rates are typically slower at low temperatures and faster at high temperatures, which are bounded by lower and upper thresholds where development is reduced. Prairie dogs and their associated fleas (mostly Oropsylla spp) live in burrows that moderate outside environmental conditions, remaining cooler in summer and warmer in winter. We found burrow microclimates were characterized by stable daily temperatures and high relative humidity, with temperatures increasing from spring through summer. We previously showed temperature increases corresponded with increasing off-host flea abundance. To evaluate how changes in temperature could affect future prairie dog flea development and abundance, we used development rates of O. montana (a species related to prairie dog fleas), determined how prairie dog burrow microclimates are affected by ambient weather, and combined these results to develop a predictive model. Our model predicts burrow temperatures and flea development rates will increase during the twenty-first century, potentially leading to higher flea abundance and an increased probability of plague epizootics if Y. pestis is present.

  相似文献   

7.
Laboratory trials conducted over the past decade at U.S. Geological Survey National Wildlife Health Center indicate that wild populations of prairie dogs (Cynomys spp.) display different degrees of susceptibility to experimental challenge with fully virulent Yersinia pestis, the causative agent of plague. We evaluated patterns in prairie dog susceptibility to plague to determine whether the historical occurrence of plague at location of capture was related to survival times of prairie dogs challenged with Y. pestis. We found that black‐tailed prairie dogs (Cynomys ludovicianus) from South Dakota (captured prior to the detection of plague in the state), Gunnison's prairie dogs (Cynomys gunnisoni) from Colorado, and Utah prairie dogs (Cynomys parvidens) from Utah were most susceptible to plague. Though the susceptibility of black‐tailed prairie dogs in South Dakota compared with western locations supports our hypothesis regarding historical exposure, both Colorado and Utah prairie dogs have a long history of exposure to plague. It is possible that for these populations, genetic isolation/bottle necks have made them more susceptible to plague outbreaks.  相似文献   

8.
Plague is the primary cause for the rangewide decline in prairie dog (Cynomys spp.) distribution and abundance, yet our knowledge of plague dynamics in prairie dog populations is limited. Our understanding of the effects of plague on the most widespread species, the black-tailed prairie dog (C. ludovicianus), is particularly weak. During a study on the population biology of black-tailed prairie dogs in Wyoming, USA, plague was detected in a colony under intensive monitoring, providing a unique opportunity to quantify various consequences of plague. The epizootic reduced juvenile abundance by 96% and adult abundance by 95%. Of the survivors, eight of nine adults and one of eight juveniles developed antibodies to Yersinia pestis. Demographic groups appeared equally susceptible to infection, and age structure was unaffected. Survivors occupied three small coteries and exhibited improved body condition, but increased flea infestation compared to a neighboring, uninfected colony. Black-tailed prairie dogs are capable of surviving a plague epizootic and reorganizing into apparently functional coteries. Surviving prairie dogs may be critical in the repopulation of plague-decimated colonies and, ultimately, the evolution of plague resistance.  相似文献   

9.
Human plague risks (Yersinia pestis infection) are greatest when epizootics cause high mortality among this bacterium's natural rodent hosts. Therefore, health departments in plague‐endemic areas commonly establish animal‐based surveillance programs to monitor Y. pestis infection among plague hosts and vectors. The primary objectives of our study were to determine whether passive animal‐based plague surveillance samples collected in Colorado from 1991 to 2005 were sampled from high human plague risk areas and whether these samples provided information useful for predicting human plague case locations. By comparing locations of plague‐positive animal samples with a previously constructed GIS‐based plague risk model, we determined that the majority of plague‐positive Gunnison's prairie dogs (100%) and non‐prairie dog sciurids (85.82%), and moderately high percentages of sigmodontine rodents (71.4%), domestic cats (69.3%), coyotes (62.9%), and domestic dogs (62.5%) were recovered within 1 km of the nearest area posing high peridomestic risk to humans. In contrast, the majority of white‐tailed prairie dog (66.7%), leporid (cottontailed and jack rabbits) (71.4%), and black‐tailed prairie dog (93.0%) samples originated more than 1 km from the nearest human risk habitat. Plague‐positive animals or their fleas were rarely (one of 19 cases) collected within 2 km of a case exposure site during the 24 months preceding the dates of illness onset for these cases. Low spatial accuracy for identifying epizootic activity prior to human plague cases suggested that other mammalian species or their fleas are likely more important sources of human infection in high plague risk areas. To address this issue, epidemiological observations and multi‐locus variable number tandem repeat analyses (MLVA) were used to preliminarily identify chipmunks as an under‐sampled, but potentially important, species for human plague risk in Colorado.  相似文献   

10.
Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on North American wildlife. Epizootics, or die-offs, in prairie dogs (Cynomys ludovicianus) occur sporadically and fleas (Siphonaptera) are probably important in the disease's transmission and possibly as maintenance hosts of Y. pestis between epizootics. We monitored changes in flea abundance in prairie dog burrows in response to precipitation, temperature, and plague activity in shortgrass steppe in northern Colorado. Oropsylla hirsuta was the most commonly found flea, and it increased in abundance with temperature. In contrast, Oropsylla tuberculata cynomuris declined with rising temperature. During plague epizootics, flea abundance in burrows increased and then subsequently declined after the extirpation of their prairie dog hosts.  相似文献   

11.
Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single‐place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black‐tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black‐tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off‐colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White‐tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black‐tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black‐tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing‐tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single‐place studies.  相似文献   

12.
Grooming is a common animal behavior that aids in ectoparasite defense. Ectoparasites can stimulate grooming, and natural selection can also favor endogenous mechanisms that evoke periodic bouts of “programmed” grooming to dislodge or kill ectoparasites before they bite or feed. Moreover, grooming can function as a displacement or communication behavior. We compared the grooming behaviors of adult female black‐tailed prairie dogs (Cynomys ludovicianus) on colonies with or without flea control via pulicide dust. Roughly 91% of the prairie dogs sampled on the non‐dusted colony carried at least one flea, whereas we did not find fleas on two dusted colonies. During focal observations, prairie dogs on the non‐dusted colony groomed at higher frequencies and for longer durations than prairie dogs on the dusted colonies, lending support to the hypothesis that fleas stimulated grooming. However, the reduced amount of time spent grooming on the dusted colonies suggested that approximately 25% of grooming might be attributed to factors other than direct stimulation from ectoparasites. Non‐dusted colony prairie dogs rarely autogroomed when near each other. Dusted colony prairie dogs autogroomed for shorter durations when far from a burrow opening (refuge), suggesting a trade‐off between self‐grooming and antipredator defense. Allogrooming was detected only on the non‐dusted colony and was limited to adult females grooming young pups. Grooming appears to serve an antiparasitic function in C. ludovicianus. Antiparasitic grooming might aid in defense against fleas that transmit the plague bacterium Yersinia pestis. Plague was introduced to North America ca. 1900 and now has a strong influence on most prairie dog populations, suggesting a magnified effect of grooming on prairie dog fitness.  相似文献   

13.
14.
Elucidating feeding relationships between hosts and parasites remains a significant challenge in studies of the ecology of infectious diseases, especially those involving small or cryptic vectors. Black‐tailed prairie dogs (Cynomys ludovicianus) are a species of conservation importance in the North American Great Plains whose populations are extirpated by plague, a flea‐vectored, bacterial disease. Using polymerase chain reaction (PCR) assays, we determined that fleas (Oropsylla hirsuta) associated with prairie dogs feed upon northern grasshopper mice (Onychomys leucogaster), a rodent that has been implicated in the transmission and maintenance of plague in prairie‐dog colonies. Our results definitively show that grasshopper mice not only share fleas with prairie dogs during plague epizootics, but also provide them with blood meals, offering a mechanism by which the pathogen, Yersinia pestis, may be transmitted between host species and maintained between epizootics. The lack of identifiable host DNA in a significant fraction of engorged Oropsylla hirsuta collected from animals (47%) and prairie‐dog burrows (100%) suggests a rapid rate of digestion and feeding that may facilitate disease transmission during epizootics but also complicate efforts to detect feeding on alternative hosts. Combined with other analytical approaches, e.g., stable isotope analysis, molecular genetic techniques can provide novel insights into host‐parasite feeding relationships and improve our understanding of the role of alternative hosts in the transmission and maintenance of disease.  相似文献   

15.
Sylvatic plague is a flea-borne zoonotic disease caused by the bacterium Yersinia pestis, which can cause extensive mortality among prairie dogs (Cynomys) in western North America. It is unclear whether the plague organism persists locally among resistant host species or elsewhere following epizootics. From June to August 2002 and 2003 we collected blood and flea samples from small mammals at prairie dog colonies with a history of plague, at prairie dog colonies with no history of plague, and from off-colony sites where plague history was unknown. Blood was screened for antibody to Y. pestis by means of enzyme-linked immunosorbent assay or passive hemagglutination assay and fleas were screened for Y. pestis DNA by polymerase chain reaction. All material was negative for Y. pestis including 156 blood samples and 553 fleas from colonies with a known history of plague. This and other studies provide evidence that Y. pestis may not persist at prairie dog colonies following an epizootic.  相似文献   

16.
Sylvatic plague (Yersinia pestis) was introduced into North America over 100 years ago. The disease causes high mortality and extirpations in black-tailed prairie dogs (Cynomys ludovicianus), which is of conservation concern because prairie dogs provide habitat for the critically endangered black-footed ferret (Mustela nigripes). Our goal was to help elucidate the mechanism Y. pestis uses to persist in prairie ecosystems during enzootic and epizootic phases. We used a nested PCR protocol to assay for plague genomes in fleas collected from prairie dog burrows potentially exposed to plague in 1999 and 2000. No active plague epizootic was apparent in the 55 prairie dog colonies sampled in 2002 and 2003. However, 63% of the colonies contained plague-positive burrows in 2002, and 57% contained plague-positive burrows in 2003. Within plague-positive colonies, 23% of sampled burrows contained plague-positive fleas in 2002, and 26% contained plague-positive fleas in 2003. Of 15 intensively sampled colonies, there was no relationship between change in colony area and percentage of plague-positive burrows over the two years of the study. Some seasonality in plague prevalence was apparent because the highest percentages of plague-positive colonies were recorded in May and June. The surprisingly high prevalence of plague on study area colonies without any obvious epizootic suggested that the pathogen existed in an enzootic state in black-tailed prairie dogs. These findings have important implications for the management of prairie dogs and other species that are purported to be enzootic reservoir species.  相似文献   

17.
Plague is a flea‐borne disease of mammalian hosts. On the grasslands of western North America, plague stifles populations of Cynomys spp. prairie dogs (PDs). To manage plague, PD burrows are treated with 0.05% deltamethrin dust that can suppress flea numbers and plague transmission. Here, we evaluate the degree and duration of deltamethrin flea control with three PD species at six sites across four U.S. states. Data were simultaneously collected at paired plots. Burrows from one randomly assigned member of each pair were treated with deltamethrin; non‐treated plots served as experimental baselines. Flea control was strong ≤two months after treatment, remained moderate one year later, and was statistically detectable for up to two years at some sites. Flea abundance was lower in plots with higher rates of deltamethrin application. After burrow treatments, flea abundance increased over time, reaching >one per PD within 255 to 352 days. Nevertheless, annual treatments of burrows with deltamethrin provided PDs with substantial protection against plague. Even so, deltamethrin should be further evaluated and combined with other tools under an integrated approach to plague management. Integrated plague management should help to conserve PDs and species that associate with them, including the endangered black‐footed ferret (Mustela nigripes).  相似文献   

18.
Behavioral, genetic, and immune variation within a host population may lead to aggregation of parasites whereby a small proportion of hosts harbor a majority of parasites. In situations where two or more parasite species infect the same host population there is the potential for interaction among parasites that could potentially influence patterns of aggregation through either competition or facilitation. We studied the occurrence and abundance patterns of two congeneric flea species on black-tailed prairie dog (Cynomys ludovicianus) hosts to test for interactions among parasite species. We live-trapped prairie dogs on ten sites in Boulder County, CO and collected their fleas. We found a non-random, positive association between the two flea species, Oropsylla hirsuta and O. tuberculata cynomuris; hosts with high loads of one flea species had high loads of the second species. This result suggests that there is no interspecific competition among fleas on prairie dog hosts. Host weight had a weak negative relationship to flea load and host sex did not influence flea load, though there were slight differences in flea prevalence and abundance between male and female C. ludovicianus. While genetic and behavioral variation among hosts may predispose certain individuals to infection, our results indicate apparent facilitation among flea species that may result from immune suppression or other flea-mediated factors.  相似文献   

19.
Animals sharing a common habitat can indirectly receive information about their environment by observing information exchanges between other animals, a process known as eavesdropping. Animals that use an auditory alarm calling system are an important indirect information source for eavesdropping individuals in their environments. We investigated whether Western burrowing owls (Athene cunicularia hypugaea) nesting on black‐tailed prairie dog (Cynomys ludovicianus) colonies responded to broadcasts of prairie dog alarm calls. Western burrowing owls are closely associated with black‐tailed prairie dogs in Colorado and neighboring states on the Great Plains of the United States. Prairie dog burrows in active colonies can serve as nesting sites for Western burrowing owls, and prairie dogs may act as an alternative prey source for predators, potentially decreasing the burrowing owls' risk of predation through the dilution effect. Burrowing owls nesting on prairie dog colonies may also eavesdrop on prairie dog alarm calls, enhancing their survival and nesting success on prairie dog colonies. We performed broadcast experiments with three different sounds: a prairie dog alarm call, a biological control (cattle mooing), and a non‐biological control (an airplane engine), and characterized burrowing owl responses as either alert or relaxed. For each sound stimulus, we recorded the time to first alert response to broadcast sounds (latency) and also how frequently the target burrowing owl exhibited an alert response within the first ten seconds of the broadcast (intensity). Burrowing owls reacted more quickly to the prairie dog alarm than to the biological control. They significantly increased the intensity of alert behaviors in response to broadcasts of the alarm, but did not show an increased reaction to either the biological or the non‐biological control. Our results suggest that burrowing owls nesting on prairie dog colonies eavesdrop on, and increase their alert behaviors in response to, prairie dog alarm calls.  相似文献   

20.
The ability of vector-borne diseases to persist and spread is closely linked to the ecological characteristics of the vector species they use. Yet there have been no investigations of how species used as vectors by pathogens such as the plague bacterium differ from closely related species that are not used as vectors. The plague bacterium uses mammals as reservoir hosts and fleas as vectors. The ability of different fleas to serve as vectors is assumed to depend on how likely they are to experience gut blockage following bacterial multiplication; the blockage causes fleas to regurgitate blood into a wound and thus inject bacteria into new hosts. Beyond these physiological differences, it is unclear whether there exist fundamental ecological differences between fleas that are effective vectors and those that are not. Here, using a comparative analysis, we identify clear associations between the ability of flea species to transmit plague and their ecological characteristics. First, there is a positive relationship between the abundance of flea species on their hosts and their potential as vectors. Second, although the number of host species exploited by a flea is not associated with its potential as a vector, there is a negative relationship between the ability of fleas to transmit plague and the taxonomic diversity of their host spectrum. This suggests a correlation between some ecological characteristics of fleas and their ability to develop the plague blockage. The plague pathogen thus uses mainly abundant fleas specialized on a narrow taxonomic range of mammals, features that should maximize the persistence of the disease in the face of high flea mortality, and its transmission to suitable hosts only. This previously unrecognized pattern of vector use is of importance for the persistence and transmission of the disease.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号