首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We have completed a taxonomic revision of the New Zealand marbled skink (Cyclodina oliveri) species complex. Morphological analyses and mitochondrial sequence data (ND2, ND4, Cytochrome b; Total 1933 bp) are used to describe a new taxon (commonly known as the “Mokohinau” skink) and redefine C. oliveri. The morphological and molecular data indicate that C. oliveri is distributed on the Poor Knights Islands, Mercury Islands and Aldermen Islands. The new species is restricted to the Mokohinau Islands, Hen and Chickens group, Little Barrier Island and Great Barrier Island. Our data demonstrate that there is no support for the separation of the Poor Knights Islands population of C. oliveri from those on the Mercury Islands and Aldermen Islands. The genetic data indicate that C. whitakeri is part of the C. oliveri species group. Divergence time estimates indicate that the C. oliveri species complex diverged during the late‐Miocene, with further divergences among island groups in C. oliveri including the origin of the new taxon during the late‐Pliocene and mid‐Pleistocene. We present a diagnostic key for Cyclodina.  相似文献   

2.
Abstract

The karyotypes of the skinks Leiolopisma telfairi (Desjardin) and Cyclodina oliveri (McCann) are presented for the first time, from male spceimens. Metaphase cells from intestinal epithelium (C. oliveri) and testicular material (C. oliveri and L. telfairi) gave the diploid number, 2n = 30, for both species. Heteromorphism of the pair 6 chromosomes was observed in C. oliveri; this is the first published report of male heterogamety in the Scincidae. A common origin is proposed for L. spenceri and L. telfairi, on the basis of chromosome pair 8 morphology. These species may be more closely allied to Cyclodina than previously believed.  相似文献   

3.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

4.
1. The freshwater crayfish Cherax dispar (Decapoda: Parastacidae) inhabits coastal regions and islands of South East Queensland, Australia. We hypothesised that populations of C. dispar on different islands would be more genetically divergent from each other than populations from different drainages within the same island or on the mainland. 2. Phylogenetic and phylogeographic analyses were conducted on two mitochondrial genes (cytochrome oxidase subunit I & 16S ribosomal DNA) and one nuclear gene (Internal Transcribed Spacer region 2). Phylogeographic patterns were compared with those for other freshwater organisms in the area. 3. Deep genetic divergences were found within C. dispar, including four highly divergent (up to 20%) clades. The geographic distribution of each of the clades revealed strong latitudinal structuring along the coast rather than structuring among the islands. The high genetic divergence observed among the C. dispar clades was estimated to have pre‐dated island formation and may represent ancient river drainage patterns. 4. A restricted distribution was observed for the most divergent clade, which was discovered only on two of the sand islands (North Stradbroke Island and Moreton Island). Furthermore, strong phylogeographic structuring was observed within this clade on North Stradbroke Island, where no haplotypes were shared between samples from opposite sides of the island. This low connectivity within the island supports the idea that C. dispar rarely disperse terrestrially (i.e. across watersheds).  相似文献   

5.
Cook Strait, which separates the North and South Island of New Zealand, has been a transient, but re-occurring feature of the New Zealand land mass throughout the Pleistocene, maintaining its current width and depth for the past 5000 years. Historic land fragmentation coupled with the complex hydrography of the Greater Cook Strait region has created both biogeographic and phylogeographic disjunctions between the North and South Island in several marine species. Here we use mitochondrial cytochrome b DNA sequences of three endemic intertidal limpets, Cellana ornata, Cellana radians and Cellana flava to assess intraspecific phylogeographic patterns across Cook Strait and to look for interspecific concordance of ecological and evolutionary processes among closely related taxa. We sequenced 328-359 bp in 85-321 individuals from 8-31 populations spanning the biogeographic range of the three species. Intraspecific phylogeographic analyses show moderate to strong genetic discontinuity among North and South Island populations due to allopatric fragmentation. This pattern was broadly concordant across the three species and the observed divergence among this group of intertidal limpets (0.3-2.0%) is similar to that of previously studied subtidal organisms. For each species, divergence time calculations suggest contemporary North and South Island lineages diverged from their respective most recent common ancestor approximately 200 000 to 300 000 years before present (bp), significantly earlier than previous estimates in other coastal marine taxa that arose from a miscalculation of divergence time.  相似文献   

6.
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

7.
Aim To test the congruence of phylogeographic patterns and processes between a woodland agamid lizard (Diporiphora australis) and well‐studied Australian wet tropics fauna. Specifically, to determine whether the biogeographic history of D. australis is more consistent with a history of vicariance, which is common in wet tropics fauna, or with a history of dispersal with expansion, which would be expected for species occupying woodland habitats that expanded with the increasingly drier conditions in eastern Australia during the Miocene–Pleistocene. Location North‐eastern Australia. Methods Field‐collected and museum tissue samples from across the entire distribution of D. australis were used to compile a comprehensive phylo‐geographic dataset based on c. 1400 bp of mitochondrial DNA (mtDNA), incorporating the ND2 protein‐coding gene. We used phylogenetic methods to assess biogeographic patterns within D. australis and relaxed molecular clock analyses were conducted to estimate divergence times. Hierarchical Shimodaira–Hasegawa tests were used to test alternative topologies representing vicariant, dispersal and mixed dispersal/vicariant biogeographic hypotheses. Phylogenetic analyses were combined with phylogeographic analyses to gain an insight into the evolutionary processes operating within D. australis. Results Phylogenetic analyses identified six major mtDNA clades within D. australis, with phylogeographic patterns closely matching those seen in many wet tropics taxa. Congruent phylogeographic breaks were observed across the Black Mountain Corridor, Burdekin and St Lawrence Gaps. Divergence amongst clades was found to decrease in a north–south direction, with a trend of increasing population expansion in the south. Main conclusions While phylogeographic patterns in D australis reflect those seen in many rain forest fauna of the wet tropics, the evolutionary processes underlying these patterns appear to be very different. Our results support a history of sequential colonization of D. australis from north to south across major biogeographic barriers from the late Miocene–Pleistocene. These patterns are most likely in response to expanding woodland habitats. Our results strengthen the data available for this iconic region in Australia by exploring the understudied woodland habitats. In addition, our study shows the importance of thorough investigations of not only the biogeographic patterns displayed by species but also the evolutionary processes underlying such patterns.  相似文献   

8.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

9.
The southeastern coastal plain of the United States is a region marked by extraordinary phylogeographic congruence that is frequently attributed to the changing sea levels that occurred during the glacial‐interglacial cycles of the Pleistocene epoch. A phylogeographic break corresponding to the Apalachicola River has been suggested for many species studied to date that are endemic to this region. Here, we used this pattern of phylogeographic congruence to develop and test explicit hypotheses about the genetic structure in the ornate chorus frog (Pseudacris ornata). Using 1299 bp of mtDNA sequence and seven nuclear microsatellite markers in 13 natural populations of P. ornata, we found three clades corresponding to geographically distinct regions; one spans the Apalachicola River (Southern Clade), one encompasses Georgia and South Carolina (Central Clade) and a third comprises more northerly individuals (Northern Clade). However, it does not appear that typical phylogeographic barriers demarcate these clades. Instead, isolation by distance across the range of the entire species explained the pattern of genetic variation that we observed. We propose that P. ornata was historically widespread in the southeastern United States, and that a balance between genetic drift and migration was the root of the genetic divergence among populations. Additionally, we investigated fine‐scale patterns of genetic structure and found the spatial scale at which there was significant genetic structure varied among the regions studied. Furthermore, we discuss our results in light of other phylogeographic studies of southeastern coastal plain organisms and in relation to amphibian conservation and management.  相似文献   

10.
Aim The Mohave ground squirrel (Xerospermophilus mohavensis) is one of a few endemic species of the Mojave Desert of south‐western North America. We describe phylogeographic patterns within this species and its sister taxon (Xerospermophilus tereticaudus) and test hypotheses concerning their biogeographical history using genetic signatures of stable versus expanding populations. We compare these patterns with those of other Mojave species to evaluate the role of vicariance in producing phylogeographic structure during the assembly of the Mojave Desert biota. Location The Mojave Desert and adjacent desert regions of south‐western North America. Methods Complete cytochrome b gene sequences of X. mohavensis (46 individuals representing 11 localities) and X. tereticaudus (38 individuals representing 14 localities) were analysed using Bayesian methods to infer phylogenetic relationships. Genetic signals of stable or expanding populations were examined based on the distribution of recent mutations and pairwise differences, as well as with a coalescent‐based approach. Results The two species are reciprocally monophyletic and may have diverged in response to the late Pliocene–early Pleistocene uplift of the Transverse Ranges and Mojave block. Little phylogeographic structure is evident within X. mohavensis, but there is a signature of northern expansion from a presumably full‐pluvial refugium in the Mojave River basin. Four geographic subgroups are evident within X. tereticaudus, and there is a signature of northern expansion from a presumably full‐pluvial refugium in the Sonoran coastal plains. Roughly congruent phylogeographic patterns are found within five arid‐adapted taxa, indicating a strong element of vicariance during the assembly of the generally transitional Mojave Desert biota. Main conclusions We present a preliminary model for the historical assembly of the Mojave Desert biota that indicates a strong vicariant element producing autochthonous lineages (including X. mohavensis) that diverged during the major geological and climatic events of the last 5 Myr. Phylogeographic partitioning within the Mojave Desert underscores the necessity of immediate conservation measures for this unique and fragile arid ecosystem that is locked between two large metropolitan population centres and is the target of continued adverse environmental impact.  相似文献   

11.
Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent‐based inferences about demographic processes to reconstruct the population histories of two co‐distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation.  相似文献   

12.
Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic–phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene–early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene.  相似文献   

13.
The controversy over generic delimitation between Maianthemum and Smilacina has been unresolved for almost two centuries. Distributions of the two genera in the Northern Hemisphere also provide an excellent opportunity to further understand the disjunct distribution patterns of the North Temperate Flora. To test the generic delimitation and to investigate biogeographic patterns, we sequenced the partial 3′ matK gene and trnK 3′ intron of chloroplast DNA for 38 accessions, representing three species of Maianthemum, seven species of Smilacina, and four outgroup taxa. Maximum parsimony and neighbor-joining trees showed reciprocal monophyly of the two genera with very weak bootstrap support for each genus. Within each genus, relationships among species were poorly resolved. Despite its low resolution, this study shows that eastern Asian species of Smilacina and Maianthemum are generally more closely related to eastern North American taxa than to western ones. More detailed sampling of Smilacina from different geographic regions, especially from the two centers of diversity (southeastern Asia and Mexico/Central America), and additional sequences from cpDNA, as well as from nuclear DNA, are needed to test the reciprocal monophyly of the two genera and also to understand current distributions of disjunct taxa.  相似文献   

14.
Pleistocene glaciations produced significant increases in continental ice cover in polar and mid‐latitude temperate areas, sea‐level declines and shifts and reshuffling of biomes, all of which promote either isolation, coalescence or fragmentation in the distribution of land biota. If populations of several taxa have been co‐distributed for a prolonged time, and if the periods between perturbation or vicariance processes have been more or less stable, it is expected that divergence patterns of closely related and ecologically similar species will be congruent because of their similar biological and demographic characteristics. Based on this premise, we analysed the phylogeographic structure (cytochrome b) of Liolaemus pictus and Batrachyla leptopus, two widely co‐distributed lizard and frog species, respectively, in the Chiloé Archipelago of southern Chile, to decipher their genetic structure in response to a common climatic and environmental history. Haplotype network analysis and Bayesian inference suggest an evolutionary pattern of genetic diversity for the two species that is consistent with the Quaternary glacial history of southern Chile, and suggests a complex phylogeographic history in the Liolaemus and Batrachyla species. High‐divergence levels among haplotypes in some island populations of the archipelago also suggest genetic connectivity between putative refuges from Chiloé Island and the mainland along the exposed continental shelf during sea level minima associated with the most recent Quaternary glaciations. Our results are consistent with our hypothesis that two species have responded to parallel historical events in which the historical process during the last glacial maximum (approximately 41°S) has been sufficient to influence their phylogeographic structure.  相似文献   

15.
In order to investigate biogeographic influences on xeric biota in the Brazilian Atlantic Forest (BAF), a biodiversity hotspot, we used a monophyletic group including three cactus taxa as a model to perform a phylogeographic study: Cereus fernambucensis subsp. fernambucensis, C. fernambucensis subsp. sericifer, and C. insularis. These cacti are allopatric and grow in xeric habitats along BAF, including isolated granite and gneiss rock outcrops (Inselbergs), sand dune vegetation (Restinga forest), and the rocky shore of an oceanic archipelago (islands of Fernando de Noronha). The nucleotide information from nuclear gene phytochrome C and plastid intergenic spacer trnS‐trnG was used to perform different approaches and statistical analyses, comprising population structure, demographic changes, phylogenetic relationships, and biogeographic reconstruction in both spatial and temporal scales. We recovered four allopatric population groups with highly supported branches in the phylogenetic tree with divergence initiated in the middle Pleistocene: southern distribution of C. fernambucensis subsp. fernambucensis, northern distribution of C. fernambucensis subsp. fernambucensis together with C. insularis, southern distribution of C. fernambucensis subsp. sericifer, and northern distribution of C. fernambucensis subsp. sericifer. Further, the results suggest that genetic diversity of population groups was strongly shaped by an initial colonization event from south to north followed by fragmentation. The phylogenetic pattern found for C. insularis is plausible with peripatric speciation in the archipelago of Fernando de Noronha. To explain the phylogeographic patterns, the putative effects of both climatic and sea level changes as well as neotectonic activity during the Pleistocene are discussed.  相似文献   

16.
New concatenated mtDNA sequences (three genes; n = 22) of Siberian taimen Hucho taimen primarily from west Siberian and European regions of the species' range were added to 12 previously published sequences to provide a phylogeographic overview of the species. European samples show only very minor divergence from west Siberian populations, supporting a late Pleistocene expansion from Siberia into the Urals, with no particular relation to the Danube River basin huchen Hucho hucho as once hypothesized. The disjunct distribution of the genus is most likely based on an early Pleistocene vicariant event.  相似文献   

17.
Aim To compare patterns of potential and realized dispersal in ecologically similar and phylogenetically related amphidromous shrimps (Atyidae) in continental and island‐dominated landscapes. Location Eastern Australia and the Caribbean region. Methods Population genetic and phylogeographic analyses of mitochondrial DNA data for Australatya striolata from eastern Australia (a continental landscape) and Atya scabra from the Caribbean (an island‐dominated landscape). Results Australatya striolata contained two highly divergent genetic lineages in eastern Australia, corresponding to the disjunct northern and southern populations, respectively. These lineages probably represent allopatric cryptic species, both of which were found to have genetically homogeneous population structures within their regions of occurrence. Atya scabra was genetically homogeneous throughout the Caribbean. Recent population expansions were detected for Atya scabra in the Caribbean, but not for northern or southern Australatya striolata. Main conclusions The findings of this study are consistent with previously reported patterns of genetic population structure in amphidromous species in both continental and island‐dominated landscapes, suggesting that potential for widespread dispersal is typically matched by realized patterns of panmixia. We therefore raise the hypothesis that landscape setting (i.e. continent or island‐dominated) does not influence dispersal patterns in amphidromous species. Further studies, especially of population genetic patterns of amphidromous species on continents, are needed to test this idea. Interestingly, results of the genetic neutrality tests led us to hypothesize that demographic and drift‐mutation equilibrium is attainable although not always evident for amphidromous species on continents, but is not attainable for those species distributed across island settings.  相似文献   

18.
New Zealand has long been a conundrum to biogeographers, possessing as it does geophysical and biotic features characteristic of both an island and a continent. This schism is reflected in provocative debate among dispersalist, vicariance biogeographic and panbiogeographic schools. A strong history in biogeography has spawned many hypotheses, which have begun to be addressed by a flood of molecular analyses. The time is now ripe to synthesize these findings on a background of geological and ecological knowledge. It has become increasingly apparent that most of the biota of New Zealand has links with other southern lands (particularly Australia) that are much more recent than the breakup of Gondwana. A compilation of molecular phylogenetic analyses of ca 100 plant and animal groups reveals that only 10% of these are even plausibly of archaic origin dating to the vicariant splitting of Zealandia from Gondwana. Effects of lineage extinction and lack of good calibrations in many cases strongly suggest that the actual proportion is even lower, in keeping with extensive Oligocene inundation of Zealandia. A wide compilation of papers covering phylogeographic structuring of terrestrial, freshwater and marine species shows some patterns emerging. These include: east–west splits across the Southern Alps, east–west splits across North Island, north–south splits across South Island, star phylogenies of southern mountain isolates, spread from northern, central and southern areas of high endemism, and recent recolonization (postvolcanic and anthropogenic). Excepting the last of these, most of these patterns seem to date to late Pliocene, coinciding with the rapid uplift of the Southern Alps. The diversity of New Zealand geological processes (sinking, uplift, tilting, sea level change, erosion, volcanism, glaciation) has produced numerous patterns, making generalizations difficult. Many species maintain pre‐Pleistocene lineages, with phylogeographic structuring more similar to the Mediterranean region than northern Europe. This structure reflects the fact that glaciation was far from ubiquitous, despite the topography. Intriguingly, then, origins of the flora and fauna are island‐like, whereas phylogeographic structure often reflects continental geological processes.  相似文献   

19.
Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC) analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP). The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP). The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests.  相似文献   

20.
We studied the phylogeography of the Sahara frog in North Africa. We widely sampled frogs from Morocco to Tunisia (195 individuals) and sequenced two mitochondrial (16S and CO1) and one nuclear (Rag1) genes. Our results confirm that Moroccan populations of Pelophylax saharicus are genetically distinct from Algerian ones. Specimens from Alger and Djelfa (central Algeria) are genetically closer to Moroccan specimens than to east Algerian ones, and the split between these two lineages may have occurred approximately 2.6 Mya. A similar pattern of differentiation was observed in several other species and was hypothesized to be linked to the formation of the fossil island called the ‘Edough Peninsula’ in eastern Algeria around 4.2 Ma and then to have been reinforced by Pleistocene climatic changes. At the Moroccan scale, we found a low level of genetic diversity and no clear phylogeographic pattern within P. saharicus. However, our SAShA analyses revealed a mixture of random and underdistributed haplotypes, which may indicate a complex population genetic or biogeographic history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号