首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates life‐history traits of the long‐nosed skate Dipturus oxyrinchus, which is a common by‐catch in Sardinian waters. The reproductive variables were analysed from 979 specimens sampled during scientific and commercial hauls. Females (10·4–117·5 cm total length, LT) attained larger sizes than males (14·5–99·5 cm LT). To evaluate age and growth, a sub‐sample of 130 individuals (76 females and 54 males) were used. The age was estimated by annuli counts of sectioned vertebral centra. Four models were used for the length‐at‐age data: the von Bertalanffy, the exponential, the Gompertz and the logistic functions. According to the Akaike's information criterion, the Gompertz model seemed to provide the best fitting curve (L mean ± s.e. : 127·55 ± 4·90 cm, k: 0·14 ± 0·09, IP: 3·97 ± 0·90 years). The oldest female and male were aged 17 (115·5 cm LT) and 15 years (96·0 cm LT), respectively. Lengths at maturity were 103·5 cm for females and 91·0 cm for males, corresponding to 90% of the maximum observed length in both sexes. The monthly distribution of maturity stages highlighted an extended reproductive cycle, with spawning females and active males being present almost throughout the year, as confirmed by the gonado‐somatic index. Ovarian fecundity reached a maximum of 26 yolked follicles with a mean ± s.e. size of 19·7 ± 6·5 mm.  相似文献   

2.
The present work provides a detailed analysis of the reproductive strategy of the undulate ray Raja undulata in Portuguese mainland waters. The species was found mostly between 30 and 40 m deep on sandy bottoms. Egg‐laying sites were observed in the north, centre and south‐west regions, mainly at depths below 30 m. The peak of the reproductive season occurred from December to May. Asynchrony between reproductively active females and males appeared to occur, although most adult males were capable of reproducing throughout the year. The estimated length at 50% maturity was 86·2 cm (8·7 years) and 76·8 cm (7·6 years) total length for females and males, respectively. The maximum potential fecundity was estimated to be 69·8 follicles per female per reproductive season, which are released in 4·7 batches of 15 follicles. The life‐history and demographic parameters of R. undulata are similar to those of other skate species, while the potential rate of population increase (0·49) is above the published values for other elasmobranch species. With these new findings, this study makes an important contribution to the understanding of the life history of R. undulata, and provides a first evaluation of the productivity and susceptibility of the species to exploitation.  相似文献   

3.
The mechanism of senescence is an important subject of current research, but our knowledge of the factors influencing the rate of ageing in naturally occurring populations remains rudimentary. Evolutionary theories of senescence predict that investment in reproduction in early life should come at the cost of reduced somatic maintenance and thus result in earlier or more rapid senescence. We use data on the complete reproductive histories of 431 Common Blackbirds (222 males and 209 females) collected during a 19‐year study of the ecology of an urban population of this species to test the main hypotheses addressing the issue of senescence. On average, the birds in this population survived for 3.7 (± 1.9 sd) years. Reproductive success in females peaked at the age of 4, but in males remained stable until the 5th year of life. We observed declines in reproductive success, indicative of senescence, after the peak years in both sexes. The mechanism of age‐related changes in the reproduction of females confirms the individual improvement and selective disappearance hypotheses. In the case of males, the increase in reproductive performance comes as a consequence of the disappearance of poor reproducers. The parental investment associated with early life fecundity (the first two breeding seasons in males and females) impairs the breeding success of females later on. Contrary to expectations, there was no negative impact of high early life fecundity on either mortality or lifespan. Individuals of both sexes with a high early life fecundity had a higher lifetime reproductive success than those in which early life fecundity was low. Hence, the most profitable strategy is to maximize reproductive effort in the early stages of life. This yields the highest lifetime reproductive success, despite the increased impact of senescence, especially in females. These results are consistent with the disposable soma hypothesis.  相似文献   

4.
This study investigated demographic structure and reproductive characteristics of the Atlantic mackerel Scomber scombrus, in relation to landing trends in the northern‐central Adriatic Sea. Results highlighted the occurrence of only small‐sized and young‐age individuals, and a marked decline from the 1990s to the present in maximum age (from 8 to 3 years) and total length (LT; from 420 to 360 mm). Fecundity ranged between 40 000 and 190 000 eggs, and was related to female LT. High levels of atresia implied lower values of actual fecundity. Sexual maturity was attained by 72·8% of individuals in their first year of life at 200 mm. The reduction in maximum LT resulted in a marked decline in the population egg production, while the reduction in maximum age implied that females participated in fewer spawning events.  相似文献   

5.
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post‐reproductive lifespan. Moreover, most studies have examined long‐established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non‐laboratory‐adapted wild populations of D. melanogaster. Populations varied in a number of life‐history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age‐specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post‐ovipository period. Individual females exhibited clear‐cut fecundity peaks, which contrasts with previous analyses, and post‐peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post‐reproductive lifespan, which on average made up 40% of total lifespan. Post‐reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random ‘add‐on’ at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life‐history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.  相似文献   

6.
The main life‐history traits of the dorado Brachyplatystoma rousseauxii, a large Amazonian catfish undertaking the largest migration known for a freshwater fish species (from the nursery area in the estuary of the Amazon to the breeding zones in the head waters of the western Amazon basin close to the Andes), were determined from a 5 year sampling of >15 000 specimens in the Peruvian Amazon. The breeding season occurred during the falling and low‐water periods, which is hypothesized to be an adaptation to maximize the chances of young stages to reach the estuary. The size at first sexual maturity was slightly larger for females than males, c. 91 and 83 cm standard length (LS), respectively. Both males and females reproduce for the first time at >3 years old. The fecundity per spawning event ranged from 481 734 to 1 045 284 oocytes for females weighing 25 and 34 kg, respectively. Seasonal variations of body condition were similar among sexes, but differed between immature specimens that had a higher condition during the low‐water period and lower condition during rising waters, and mature individuals that showed the opposite pattern. The growth characteristics were estimated by LS frequency analysis. For females, the best fitting models gave a mean birth date in August, during the height of the breeding cycle, with the following von Bertalanffy growth function parameters: LS∞ = 153·3, K = 0·29 and t0 =– 0·37 years. For males, the best fitting model gave a mean birth date in July, also during the height of the breeding period, with LS∞ = 142, K = 0·30 and t0 =– 0·36 years. At a given age, females were systematically larger than males and the size difference increased with age. The largest females sampled (148 cm LS) was 11 years old and the largest male (134 cm LS) was 9 years old. The mortality estimates were higher for males total (Z) = 1·34, natural (M) = 0·52 and fishing (F) = 0·82 than for females (Z = 0·98, M = 0·50, F = 0·48). The life‐history patterns of B. rousseauxii are discussed in light of the available knowledge about this species and the understanding of its complex life cycle.  相似文献   

7.
To improve the understanding of the life history and ecology of one of Europe's most elusive fishes, the short‐snouted seahorse Hippocampus hippocampus, data from wild populations in a shallow coastal lagoon in southern Portugal were analysed. The data were collected from 17 tagged seahorses on a focal‐study grid as well as from >350 seahorses encountered during underwater visual surveys and a fishery‐independent study using beach seines. These populations of settled juveniles and adults had a mean population density of 0·009 m?2. During the study period (2000–2004), reproduction peaked in July and August. Juveniles recruited to the lagoon at c. 66 mm standard length (LS) and 0·5 years of age and established small home ranges (0·8 to 18·2 m2). First reproduction was estimated at 100 mm and 1 year of age. Based on a fitted von Bertalanffy model, H. hippocampus grew quickly (growth coefficient K = 0·93) to a maximum theoretical size L = 150 mm and have a maximum lifespan of c. 3·2 years. Courtship behaviours were consistent with the maintenance of pair bonds and males brooded multiple batches of young per year. Estimated annual reproductive output averaged 871 young (±632). Together these analyses provide the first life‐history parameters for this species and indicate that H. hippocampus bears characteristics of opportunist and intermediate strategists. Such populations are predicted to exhibit large fluctuations in abundance, making them vulnerable to extended periods of poor recruitment.  相似文献   

8.
From February 2005 to September 2007, a total of 490 crocodile sharks Pseudocarcharias kamoharai, caught as by‐catch in the swordfish and tuna longline fishery that operates in the tropical western Atlantic Ocean, was studied in regard to their reproductive biology. Maximum observed total lengths (LT) were 1220 and 1090 mm for females and males respectively, with a high proportion of the catch being composed of mature specimens. Sexual maturity was attained at 760–810 mm LT for males (LT50 = 800 mm) and 870–980 mm LT for females (LT50 = 916 mm). The size at birth was estimated at 415 mm LT. Temporal variation in gonad morphology and mass suggests that in this region P. kamoharai, an aplacental viviparous species with oophagy, does not show a well‐defined reproductive seasonality, with mating and parturition occurring possibly over an extended period of the year. Mean ±s.d . fecundity was estimated to be 3·9 (± 0·6) pups per reproductive cycle.  相似文献   

9.
Ornaments displayed by females have often been denied evolutionary interest due to their frequently reduced expression relative to males, habitually attributed to a genetic correlation between the sexes. We estimated annual and lifetime reproductive success of female pied flycatchers (Ficedula hypoleuca) and applied capture–mark–recapture models to analyse annual survival rates in relation to the patterns of expression (absence/presence) of an ornament displayed by all males and a fraction of females. Overall, the likelihood of expressing the ornament increased nonlinearly with female age and was due to within‐individual variation, not to the selective appearance or disappearance of ornament‐related expression of phenotypes in the population. Accordingly, expressing the forehead patch in a given year did not influence survival probability. However, those females expressing the ornament at early ages (1–2 years old) enjoyed survival advantages throughout lifetime. Although ornamented females had higher lifetime fecundity and fledging success, their yearly reproductive performance, in terms of fledging productivity, decreased as they aged so that, late in life, ornamented females reared fewer offspring than nonexpressing females of the same age. In addition, both strategies (expressing vs. not expressing the trait) returned similar fitness payoffs in terms of recruited offspring. Our results support the hypothesis that fecundity and survival selection are involved in the displaying of this ‘male’ ornament by females.  相似文献   

10.
Selection is expected to optimize reproductive investment resulting in characteristic trade‐offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life‐history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life‐history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life‐history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from < 2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. > 200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life‐history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade‐off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between fecundity and glochidial size for the remaining 61 species in the dataset. In contrast to fecundity, RE showed evidence of a strong trade‐off with lifespan, which was negatively related to RE. The raw number of glochidia produced may be determined primarily by physical and energetic constraints rather than selection for optimal output based on differences in host strategies or other traits. By integrating traits such as body size, glochidial size, and fecundity, RE appears more useful in defining mussel life‐history strategies. Combined with trade‐offs between other traits such as growth, lifespan, and age at maturity, differences in RE among species depict a broad continuum of divergent strategies ranging from strongly r‐selected species (e.g. tribe Anodontini and some Lampsilini) to K‐selected species (e.g. tribes Pleurobemini and Quadrulini; family Margaritiferidae). Future studies of reproductive effort in an environmental and life‐history context will be useful for understanding the explosive radiation of this group of animals in North America and will aid in the development of effective conservation strategies.  相似文献   

11.
The trade‐off between gametes and soma is central to life history evolution. Oosorption has been proposed as a mechanism by which females can redirect nutrients invested in oocytes into survival when conditions for reproduction are poor. Although positive correlations between oocyte degradation and lifespan have been documented in oviparous insects, the adaptive significance of this process in species with more complex reproductive biology has not been explored. Further, environmental condition is a multivariate state, and combinations of environmental stresses may interact in unpredictable ways. Previous work on the ovoviviparous cockroach, Nauphoeta cinerea, revealed that females manipulated to mate late relative to sexual maturation experience age‐related loss in fecundity because of loss of viable oocytes via apoptosis. This loss in fecundity is correlated with a reduction in female mate choice. Food deprivation while mating is delayed further increases levels of oocyte apoptosis, but the relationship between starvation‐induced apoptosis and life history are unknown. To investigate this, virgin females were either fed or starved from eclosion until provided with a mate at a time known to be suboptimal for fertility. Following mating, females were fed for the duration of their lifespan. We measured lifetime reproductive performance. Contrary to predictions, under conditions of delayed mating opportunity, starved females had greater fecundity, gave birth to more high‐quality offspring and had increased longevity compared with that of fed females. We suggest that understanding proximal mechanisms underlying life history trade‐offs, including the function of oocyte apoptosis, and how these mechanisms respond to varied environmental conditions is critical.  相似文献   

12.
13.
Studies on the reproductive biology and age of amphibians provide primary information about the life history and population demographic parameters of species. Here, we describe the reproductive cycle, size–fecundity relationships, reproductive effort, sexual dimorphism and sexual maturity of Odontophrynus americanus, the flood frog, from South Brazil. A total of 96 individuals were analysed. The reproductive cycles of males and females were described through morphoanatomical analysis of testis and ovary. Age at onset of sexual maturity and estimated longevity were determined by skeletochronology. Individuals of O. americanus presented a potentially continuous reproductive cycle with a peak of reproductive activity in the warmer months. Females presented a higher reproductive investment than males. Sexual maturity was reached at around one year of age for both sexes while longevity differed between the sexes, with females living up to six years and males up to ten years. No evidence of sexual size dimorphism was found. This study is among the few that have assessed age at sexual maturity and longevity in a Neotropical anuran. Basic aspects of life history are of paramount importance because they allow comparisons and test of hypotheses to be made, which can help to build generalizations about the evolutionary meaning of ecological strategies.  相似文献   

14.
This study describes the spawning of the fatheads Psychrolutes marmoratus and Cottunculus granulosus, two psychrolutid species that inhabit the shelf edge and continental slope of the south‐west Atlantic. Females lay large eggs of c. 2·5 mm (P. marmoratus) and 4·5–5·0 mm (C. granulosus); fecundity is from the hundreds (C. granulosus) to a few thousand eggs (P. marmoratus). Egg maturation is synchronous in P. marmoratus with an autumn–winter peak of spawning and group‐synchronous in C. granulosus, which reproduces all year round. In the fishery, females predominate among adult fish in both species, possibly indicating male nest guarding on hard grounds inaccessible to fishing vessels. The reproductive strategy of representatives of the Psychrolutidae is similar to that of other sculpins of the superfamily Cottoidea.  相似文献   

15.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

16.
The maturity and reproduction of the Atlantic angel shark Squatina dumeril were assessed using 77 females (29·2–110·4 cm total length; LT) and 269 males (58·7–108·2 cm LT) harvested by artisanal gillnetters off Venezuela. The biased sex ratio implied segregation or sex‐specific gear selectivity. Based on the development of the reproductive tract, 50% LT at sexual maturity (LT50, mean ± s.e .) for females and males were estimated at 86·14 ± 0·64 and 81·55 ± 0·12 cm, respectively. Uterine fecundity ranged between one and six and with a maximum embryo size of 25·7 cm LT. Gravid females were observed from August to December, including those close to parturition and while the gestation period was not confirmed, the size of ovarian follicles among some specimens implied protraction. The low fecundity of the species supports close monitoring of catches.  相似文献   

17.
18.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

19.
Chimaera carophila (n = 45) and Hydrolagus homonycteris (n = 11), two deep‐sea chimaerids rarely caught in the waters off New Zealand, were collected from research trawl catches and commercial fishery catches around New Zealand at depths between 400 and 1300 m, between 2014 and 2016. Additional preserved specimens of both species (n = 58) from museum collections were analysed for size, sex and maturity. External assessment of male claspers and a combination of internal assessments of female gonad mass and oviducal gland width, were used to determine maturity. For both species, length at first maturity was 0·70–0·82 of their maximum observed chimaera length (LC), with females maturing at a larger size. Length at maturity for C. carophila (LC range: 28·7–103·9 cm) was estimated at 72·5 cm LC for males (n = 163) and 82·5 LC for females (n = 58). In H. homonycteris, length at maturity (length range: 78·6–99·8 cm LC) was estimated at 79·1 cm LC for males (n = 51) and 80·1 cm LC for females (n = 17). Ovarian fecundity was up to 31 for C. carophila and sperm storage was confirmed in the oviducal gland of this species. Both species preyed on benthic invertebrates. Some C. carophila and H. homonycteris inhabit depths beyond most current fisheries, but both species appear to be relatively rare and have reproductive parameters characteristic of low productivity, which may make these species vulnerable to population decline if mortality was to increase in the future.  相似文献   

20.
Sexual selection theory predicts that, when body size is correlated with fecundity, there should be fitness advantages for mate choice of the largest females. Moreover, because larger males are expected to monopolise the largest females, this should result in an assortative mating based on body size. Although such patterns could be expected in both explosive and prolonged breeders, non‐assortative mating should be more widespread in species under time constraints. However, patterns of sexual selection are largely unexplored in explosive breeding species, and contrasting patterns have been found previously. We expect that the active choice of partners may be particularly risky when the time period during which sexual partners are available is severely limited. Therefore, to avoid missing an entire reproductive act, males and females should pair irrespective of traits, such as body size. We tested this hypothesis by investigating the mating patterns of the Pacific horned toad, Ceratophrys stolzmanni, a short‐lived fossorial species inhabiting Neotropical dry forests. This species is particularly adequate to test our prediction because it reproduces explosively over the course of a single night per year. Although the number of eggs laid was proportional to the size of females, and individuals of both sexes showed variation in body size, there was no assortative mating based either on size, body condition or age of mates. Egg size was not influenced by either female size or clutch size. The larger body size of females compared to males is likely due to fecundity selection, that is, the selective pressure that enhances reproductive output. Although we cannot dismiss the possibility that individuals could select their partners based on other criteria than those related to size or age, the results fit well our prediction, showing that the explosive breeding makes improbable an active choice of partners in both sexes and therefore favours a random mating pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号