首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location Eastern United States. Methods Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south‐western Mississippi. Main conclusions The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre‐glacial Teays‐Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays‐Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre‐Pleistocene vicariance hypothesis.  相似文献   

2.
Aim To examine the effects of historical climate change and drainage isolation on the distribution of mitochondrial DNA cytochrome b genetic variation within the rainbow darter, Etheostoma caeruleum (Percidae: Etheostomatinae). Location Eastern North American streams including tributaries to the Mississippi River, Great Lakes, Potomac River and Hudson Bay drainages. Methods Parsimony analyses, Bayesian analyses and haplotype networks of mitochondrial DNA sequences. Results Four major clades were recovered from sampled populations of E. caeruleum. Three of four clades are distributed in the western portion of the species’ range (primarily west of the Mississippi River). Samples from this region do not form a monophyletic group, and sequences often vary greatly between samples from adjacent stream systems (up to 7.2% divergence). A basal clade includes samples from the White River system in the Ozark Highlands. The northern Ozarks–upper Midwest clade includes samples from Missouri River tributaries and the upper Midwest (Hudson Bay, upper Mississippi River, and western Lake Michigan drainage). The eastern clade is composed of individuals from the Ohio River, Great Lakes and Potomac River. The Mississippi River corridor clade includes samples from middle and lower Mississippi River tributaries. Main conclusions The four major clades of E. caeruleum are deep allopatric lineages with well‐defined boundaries and have additional phylogeographical structure within each clade. The Ozark Highlands have the greatest levels of diversity relative to distributional area, with marked cytochrome b subdivisions between adjacent stream systems. Samples from previously glaciated areas do not have a subset of the cytochrome b diversity found in unglaciated areas, but four separate source areas are identified based on phylogenetic analyses. Dispersal into previously glaciated areas followed several known glacial outlets and, based on sequence divergence between populations, may have occurred during different glacial or interglacial stages. The disjunct distribution and cytochrome b pattern of E. caeruleum in the Mississippi River corridor clade is consistent with late Pleistocene and Recent changes in the course and characteristics of the middle and lower Mississippi River. Phylogeographical boundaries between clades of E. caeruleum correspond to independent sources of biogeographical information and provide insight into historical stream drainage relationships, post‐glacial colonization and drainage isolation patterns.  相似文献   

3.
Seven populations of the imperiled snuffbox mussel, Epioblasma triquetra , were sampled from across the central basin of North America. Samples were genotyped using 15 microsatellite DNA loci, and maternal history was inferred using mitochondrial DNA (mtDNA) cytochrome  c oxidase subunit-I (COI) sequences. Populations in the Clinch and St Francis rivers were quite distinct in their mtDNA. The population in the St Francis River had a unique, fixed haplotype. Among a suite of haplotypes, the population in the Clinch River had two unique haplotypes of common ancestry. The other populations were dominated by a common haplotype, which also occurred in the Clinch River population. Analysis of DNA microsatellites revealed much greater divergences and showed significant genetic structure between populations in the formerly glaciated regions. Divergence has occurred between the populations, as evidenced by moderate to high fixation indices ( F ST and R ST values) and nearly perfect assignment tests. These results indicate the occurrence of three glacial refugia for E. triquetra : the Tennessee River, rivers south of the Ozark Crest, and the lower Ohio River drainage near the confluence with the Mississippi. Populations in the lower Ohio River were likely to be responsible for the postglacial reinvasion into formerly glaciated regions, and into the upper Tennessee River drainage. The population of the St Francis River may constitute a distinct taxonomic entity. Conservation efforts, if necessary for this imperiled species, should not mix populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 371–384.  相似文献   

4.
Periodic glaciation during the Quaternary period shaped the contemporary riverscape and distribution of freshwater fishes in the Mississippi River drainage of central North America. The rainbow darter (Etheostoma caeruleum) is a member of this ichthyofauna and has a disjunct distribution in glaciated and unglaciated environments west of the Mississippi River. Based on glacial history of the region, there are different expectations on the observed spatial genetic structure of populations in these environments. The aim of this study was to utilize genome‐wide SNP data to compare the population genomic structure of the rainbow darter in river networks with disparate glacial histories; the Volga River in the glaciated upper Mississippi River basin and the Meramec River in the unglaciated Ozark Plateau. Individuals were sampled from localities within each river system at distances dictated by the organismal life history and habitat preferences. Riverscape analyses were performed on three datasets: total combined localities of both rivers and one for each river independently. The results revealed a lasting influence of historic glaciation on the population genomic structure of rainbow darter populations. There was evidence of population expansion into the glaciated northern region following glacial retreat. The population genetic signature within the Volga River did not fit expectations of the stream hierarchy model, but revealed a pattern of repeated colonization and extirpation due to cyclic glaciation. The population within the unglaciated Meramec River adhered to the stream hierarchy model, with a directional order of genetic diversity based on the life history and habitat preferences of the species. These results demonstrate the importance of considering the geologic and climatic history of a region as well as the life history of an organism when interpreting spatial genetic patterns.  相似文献   

5.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

6.
Phylogeographic relationships, the timing of clade diversification, and the potential for cryptic diversity in the Slender Madtom, Noturus exilis, was investigated using mitochondrial Cyt b, nuclear RAG2, shape analysis, and meristic and pigmentation data. Three well-supported and deeply divergent clades were recovered from analyses of genetic data: Little Red River (White River drainage) clade, Arkansas + Red River (Mississippi River) clade, and a large clade of populations from the rest of the range of the species. Recovered clades showed little to no diagnostic morphological differences, supporting previous hypotheses of morphological conservatism in catfishes, and indicating morphology may commonly underestimate diversity in this group of fishes. The Little Red River clade is the most distinct lineage of N. exilis with 11 POM pores (vs. 10 in other populations) and unique Cyt b haplotypes and RAG 2 alleles. However, treating it as a species separate from N. exilis would imply that the other major clades of N. exilis are more closely related to one another than they are to the Little Red River clade, which was not supported.The UCLN age estimate for Noturus was 23.9 mya (95% HPD: 13.49, 35.43), indicating a late Oligocene to early Miocene origin. The age of N. exilis was estimated as late Miocene at 9.7 mya (95% HPD: 5.32, 14.93). Diversification within the species spanned the late Miocene to mid-Pleistocene. The largest clade of N. exilis, which dates to the late Miocene, includes populations from the unglaciated Eastern and Interior Highlands as well as the previously glaciated Central Lowlands. Diversification of this clade coincides with a drastic drop in sea-level and diversification of other groups of Central Highlands fishes (Centrarchidae and Cyprinidae). Sub-clades dating to the Pleistocene show that northern populations occurring in previously glaciated regions resulted from dispersal from populations in the Ozarks up the Mississippi River following retreat of the Pleistocene glaciers. Pre-Pleistocene vicariance, such as drainage pattern changes of the Mississippi River, also played a prominent role in the history of the species. The incorporation of a temporal estimate of clade diversification revealed that in some instances, phylogeographic breaks shared with other aquatic species were best explained by different or persistent vicariant events through time, rather than a single shared event.  相似文献   

7.
We employed restriction site variation in mitochondrial (mt)DNA to determine if significant phylogeographic structure occurs in the North American cyprinid fish Cyprinella lutrensis. Digestion patterns from 16 restriction endonucleases identified fifty mtDNA haplotypes among 127 individuals of Cyprinella lutrensis assayed from localities in the Gulf Coastal Plain, the Great Plains, and the Central Lowlands. Nucleotide sequence divergence among haplotypes was highly variable (mean ± SE: 2.87%± 0.08; range: 0.14–9.24%). Maximum-parsimony analysis and the neighbour joining method of tree construction revealed three major groupings (clades) of haplotypes that differed in geographic distribution. Divergence estimates between the basal clade, comprised of haplotypes primarily from the Brazos River in east Texas, and the remaining two clades, place C. lutrensis in the western Gulf Coastal Plain prior to Pleistocene glaciation. Nucleotide sequence divergence between the second clade, comprised of haplotypes from the Trinity and Calcasieu rivers in east Texas and southwestern Louisiana, respectively, and the third clade (comprised primarily of haplotypes from localities north of Texas and affected directly by Pleistocene glaciation), suggest that C. lutrensis colonized gladated regions to the north during the mid- to late Pleistocene. This hypothesis is supported by levels of intrapopulational nucleotide diversity in geographic localities outside of Texas and by geological evidence. Despite marked geographic variation in morphometries, meristics, and nuptial coloration, mtDNA variation in glaciated regions was not geographically structured, and subspecies of C. lutrensis were not identifiable by phylogenetic analysis of mtDNA.  相似文献   

8.
The highland fish fauna of eastern North America consists of Appalachian and Ozark centers of endemism separated by the intervening Glacial Till Plains. Clades within these areas are more closely related phylogenetically to each other than to clades occurring in the intervening formerly glaciated region, suggesting that the Pleistocene glaciations fragmented a widespread highland region and its associated fauna. Alternatively, it is possible that these faunal assemblages predate the glaciations or that recent dispersals may have been more important than vicariance in determining faunal compositions. We examined the relationships among mitochondrial DNA (mtDNA) haplotypes within five clades of highland fishes, each with a distribution suggestive of a Pleistocene vicariance event. Darters of the subgenera Litocara and Odontopholis have distributions and mtDNA relationships that are consistent with the Pleistocene integration and burial of the Teays-Mahomet valley, a major drainage of the early Pleistocene. The distribution and mtDNA relationships among subspecies of Erimystax dissimilis are not consistent with Pleistocene vicariance, but relationships among Appalachian haplotypes are consistent with the late Pleistocene integration of the modern Ohio River system. Both Cottus carolinae and the Fundulus catenatus species group have representatives in the Mobile basin consistent with pre-Pleistocene divergences. Three haplotype clusters were found in C. carolinae, corresponding to the Appalachian, Ozark, and upper Kanawha River populations. However, Appalachian and Ozark F. catenatus populations are paraphyletic with respect to each other. This, coupled with a relatively low degree of sequence divergence, suggests that no long-term barriers to gene flow exist for C. carolinae and F. catenatus. These three distinct phylogeographic patterns indicate that Pleistocene vicariance is not the only explanation for the Appalachian-Ozark distribution of highland fish communities.  相似文献   

9.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

10.
Near TJ  Page LM  Mayden RL 《Molecular ecology》2001,10(9):2235-2240
North America exhibits the most diverse freshwater fish fauna among temperate regions of the world. Species diversity is concentrated in the Central Highlands, drained by the Mississippi, Gulf Slope and Atlantic Slope river systems. Previous investigations of Central Highlands biogeography have led to conflicting hypotheses involving dispersal and vicariance to explain the diversity and distribution of the freshwater fish fauna. In this investigation predictions of the Central Highlands pre-Pleistocene vicariance hypothesis are tested with a phylogeographic analysis of the percid species Percina evides, which is widely distributed in several disjunct areas of the Central Highlands. Phylogenetic analysis of complete gene sequences of mitochondrially encoded cytochrome b recover three phylogroups, with very low levels of sequence polymorphism within groups. The two western phylogroups are monophyletic with respect to the eastern phylogroup. The recovery of two monophyletic lineages with an eastern and western distribution in the disjunct highland areas is a pattern expected from vicariance, but is not predicted by the Central Highlands pre-Pleistocene vicariance hypothesis. The recovery of very limited mitochondrial DNA polymorphism and lack of phylogeographic structuring across the entire range of the eastern clade, very shallow polymorphism between the disjunct Missouri River and upper Mississippi River populations, and lack of sequence polymorphism in the upper Mississippi River populations, support a hypothesis of dispersal during or following the Pleistocene. The present distribution of P. evides is best explained by both vicariant and dispersal events.  相似文献   

11.
Synopsis The Etheostoma variatum complex is comprised of five species (E. euzonum, E. kanawhae, E. osburni, E. tetrazonum, E. variatum) distributed from the Allegheny River, New York, to the White River, Arkansas. Electrophoretic data provide evidence of a division of the complex into two geographic units: E. variatum, E. kanawhae, and E. osburni in the Appalachian region, and E. euzonum and E. tetrazonum in the Ozarks. Genic variation exists also between the Sac and Big river populations of E. tetrazonum. Genic variation and present faunal distributions suggest that an ancestral stock was widely distributed in Teays and Old Mississippi rivers but separated by a Pleistocene ice advance. Some populations survived in an Ozarkian refugium, while more eastern populations, such as the precursor to E. variatum, may have evolved in a southern refuge of the developing Ohio River. The Teays (New) River gorge, including Kanawha Falls, has prevented E. variatum from invading territory occupied by E. osburni and E. kanawhae.  相似文献   

12.
Over 70% of North American freshwater mussel species (families Unionidae and Margaritiferidae) are listed as threatened or endangered. Knowledge of the genetic structure of target species is essential for the development of effective conservation plans. Because Ambelma plicata is a common species, its population genetic structure is likely to be relatively intact, making it a logical model species for investigations of freshwater mussel population genetics. Using mtDNA and allozymes, we determined the genotypes of 170+ individuals in each of three distinct drainages: Lake Erie, Ohio River, and the Lower Mississippi River. Overall, within-population variation increased significantly from north to south, with unique haplotypes and allele frequencies in the Kiamichi River (Lower Mississippi River drainage). Genetic diversity was relatively low in the Strawberry River (Lower Mississippi River drainage), and in the Lake Erie drainage. We calculated significant among-population structure using both molecular markers (A.p. Φst = 0.15, θst = 0.12). Using a hierarchical approach, we found low genetic structure among rivers and drainages separated by large geographic distances, indicating high effective population size and/or highly vagile fish hosts for this species. Genetic structure in the Lake Erie drainage was similar to that in the Ohio River, and indicates that northern populations were founded from at least two glacial refugia following the Pleistocene. Conservation of genetic diversity in Amblema plicata and other mussel species with similar genetic structure should focus on protection of a number of individual populations, especially those in southern rivers.  相似文献   

13.
The Dactylorhiza incarnata/maculata complex (Orchidaceae) was used as a model system to understand genetic differentiation processes in a naturally occurring polyploid complex with much of ongoing diversification and wide distribution in recently glaciated areas in northern Europe. Data were obtained for 12 hypervariable regions in the plastid DNA genome. A total of 166 haplotypes were found in a sample of 1099 plants. Allopolyploid taxa have inherited their plastid genomes from D. maculata s.l. Overall haplotype diversity of the combined group of allopolyploid taxa was comparable to that of maternal D. maculata s.l., but populations of allopolyploids were also more strongly differentiated from each other and contained lower numbers of haplotypes than populations of D. maculata s.l. In addition to haplotypes found in extant D. maculata s.l., the allopolyploids also contained several distinct and widespread haplotypes that were not found in any of the parental lineages. Some of these haplotypes were shared between widespread allopolyploids. Divergent allopolyploids with small distributions did not seem to originate from local polyploidization events, but rather as segregates of already existing allopolyploids. Genetic diversification of allopolyploid Dactylorhiza is the result of repeated polyploid formation, secondary hybridization and introgression between already existing polyploids and extant representatives of parental lineages, hybridization between independently derived polyploid lineages, and phyletic diversification in the group of allopolyploids. Although some polyploid taxa must have evolved after the last glaciation, genetic material from the parental lineages has been transferred continuously for longer periods of time. This combination of processes may explain the taxonomic complexity encountered in Dactylorhiza and other polyploid complexes distributed in previously glaciated parts of Europe.  相似文献   

14.
We surveyed mitochondrial DNA haplotype divergence within and between populations of six species of North American chickadees (Parus, Subgenus Poecile) with the following results. (1) Genotype diversities (range 0.3 to 0.7) and low nucleotide diversities (range 3 to 27 × 10?4) within populations were typical of known vertebrates. (2) The two widespread, northern species (atricapillus and hudsonicus) exhibit little mtDNA genetic differentiation throughout their previously glaciated continental distributions, most likely because of recent, postglacial range expansions. (3) Newfoundland populations of atricapillus and maritime province (Newfoundland plus Nova Scotia) populations of hudsonicus have distinct mtDNA haplotypes which differ from continental haplotypes by single restriction site changes. (4) Haplotypes of the southeastern U.S. species P. carolinensis divide into eastern and western sets which have diverged by three percent. This heretofore unrecognized, divided population structure may correspond to the Tombigbee River/ Mobile Bay disjunction known in some other vertebrate taxa. (5) Allopatric populations of the southwestern species sclateri and gambeli exhibit divergences of one and three percent respectively. (6) Prevailing interspecific divergence distances of three to seven percent suggest speciation early in the Pleistocene rather than during late (e.g., Wisconsin) glaciations. (7) Phylogenetic analyses suggest that North American taxa include two clades, hudsonicus-rufescens-sclateri versus carolinensis-atricapillus-gambeli and that carolinensis and atricapillus are not sister species.  相似文献   

15.
Catchment population structure and divergence patterns of the rainbow darter Etheostoma caeruleum (Percidae: Teleostei), an eastern North American benthic fish, are tested using a landscape genetics approach. Allelic variation at eight nuclear DNA microsatellite loci and two mitochondrial DNA regions [cytochrome (cyt) b gene and control region; 2056 aligned base pairs (bp)] is analysed from 89 individuals and six sites in the Lake Erie catchment (Blanchard, Chagrin, Cuyahoga and Grand Rivers) v. the Ohio River catchment (Big Darby Creek and Little Miami River). Genetic and geographic patterning is assessed using phylogenetic trees, pair‐wise FST analogues, AMOVA partitioning, Mantel regression, Bayesian assignment, 3D factorial correspondence and barrier analyses. Results identify 34 cyt b haplotypes, 22 control region haplotypes and 137 microsatellite alleles whose distributions demonstrate marked genetic divergence between populations from the Lake Erie and Ohio River catchments. Etheostoma caeruleum populations in the Lake Erie and Ohio River catchments diverged c. 1·6 mya during the Pleistocene glaciations. Greater genetic separations characterize the Ohio River populations, reflecting their older habitat age and less recent connectivity. Divergence levels within the Lake Erie catchment denote more recent post‐glacial origins. Notably, the western Lake Erie Blanchard River population markedly differs from the three central basin tributary samples, which are each genetically distinguishable using microsatellites. Overall relationships among the Lake Erie sites refute a genetic isolation by geographic distance hypothesis. Etheostoma caeruleum populations thus exchange few genes and have low migration among tributaries and catchments.  相似文献   

16.
Mitochondrial DNA divergence among populations of the Japanese spinous loach Cobitis shikokuensis, endemic to Shikoku Island, was investigated by restricted fragment length polymorphism analysis. A total of 68 restriction sites on DNA fragments from the cytochrome b to D-loop regions and from the 12S rRNA to 16S rRNA regions, amplified by PCR, were analyzed. A total of 12 haplotypes (plus 6 in outgroups) were detected in 268 specimens collected from 19 localities in seven rivers (and 41 specimens from four localities in three rivers in outgroups). Three of the seven river populations of C. shikokuensis were shown to have unique haplotypes, and four of the seven river populations were monomorphic. The nested structure of the haplotype network for populations of C. shikokuensis exhibited two large clades corresponding to (1) populations from the Shimanto River and its neighbors and (2) two genetically divergent populations in the Shigenobu and Iwamatsu Rivers. The population from the Shimanto River, the largest river inhabited by C. shikokuensis, maintains great haplotype diversity as well as the allozyme diversity previously reported. On the other hand, populations from the Hiji River, the second largest river, which exhibited the highest allozyme diversity, were monomorphic in their mtDNA. The nested clade analysis (NCA) revealed that past fragmentation between the above two clades could occur in the initial distribution process of C. shikokuensis. The large genetic divergence of two river populations from the Shigenobu and Iwamatsu Rivers was inferred to be caused by a process of long distance colonization and fragmentation. MtDNA introgression into the Hiji River population from southern river populations was suggested. Taking genetic divergence into consideration, each river population of C. shikokuensis should be conserved separately as like a distinct species, and conservation programs for the small populations showing less genetic variability should be invoked as soon as possible.  相似文献   

17.
The distribution of genetic variation within and among plant populations is influenced by both contemporary and historical factors. I used isozyme analysis of band phenotypes to examine genetic structure in the rare prairie forb Silene regia. Relationships between current-day population size, isolation, and phenotypic variation were assessed for 18 populations in two regions with differing postglacial history. Western populations from unglaciated southern Missouri and Arkansas were more genetically diverse based on the Shannon-Weaver index (H) and a polymorphic index than were more eastern populations. These differences may be due to loss of variation with repeated founding of new populations in previously glaciated sites in Indiana and Ohio. Within the western region, population size was not significantly correlated with genetic variation. In the east, size was correlated with Shannon-Weaver diversity. There was no relationship between variation and isolation in either region, but eastern populations were slightly more differentiated. Greater among-population differentiation and the demonstrated connection between population size and variation in the eastern sites may reflect lower levels of interpopulation gene flow in the fragmented remnant prairies of Indiana and Ohio.  相似文献   

18.
Most phylogeographic studies of species from the southeastern United States have shown a simple east-west division of mtDNA variation. However, a study of the salamander Ambystoma maculatum resulted in a more complex pattern that includes a close affinity between populations from the Central Highlands of Missouri and Arkansas and the Coastal Plain separated by a genetically distinct central group of populations. We test the generality of this observation by surveying mitochondrial DNA (mtDNA) variation in the closely related species A. talpoideum. An Ambystoma-specific intergenic spacer was amplified and sequenced. The 26 resulting haplotypes varied from 380 to 800 base pairs, and alignments, including the outgroup, required 101 insertions/deletions. Sequence divergence among haplotypes ranged from 0.001 to 0.758. Population subdivision was extensive (theta = 0.64). Phylogenetic analysis of A. talpoideum mtDNA sequence reveals a close relationship between the populations from the Central Highlands and the Coastal Plain. This result is similar to that obtained for A. maculatum, although the A. talpoideum clade is not as well differentiated from its sister clades. We discuss the differences and similarities between the two Ambystoma species and previous studies and call for increased focus on multiple species with similar ecologies as a way to detect subtle biogeographic events.  相似文献   

19.
The crystal darter, Crystallaria asprella, exists in geographically isolated populations that may be glacial relicts from its former, wide distribution in the Eastern U.S. An initial phylogeographic survey of C. asprella based upon the mitochondrial cytochrome b (cyt b) gene indicated that there were at least four distinct populations within the species: Ohio River basin, Upper Mississippi River, Gulf coast, and lower Mississippi River. In particular, the most divergent population was the most recently discovered, from the Elk River, WV, in the Ohio River basin, and it was postulated that this population represents an undescribed, potentially threatened species. However, differentiation observed at a single gene region is generally not considered sufficient evidence to establish taxonomic status. In the present study, nucleotide variation at the mitochondrial control region and a nuclear S7 ribosomal gene intron were compared to provide independent verification of phylogeographic results between individuals collected from the same five disjunct populations previously surveyed. Variation between populations at the control region was substantial (except between Gulf drainages) and was concordant with patterns of sequence divergence from cyt b. Only the Elk River population was resolved as monophyletic based upon nuclear S7, but significant differences based upon ΦST statistics were observed between most populations. Morphometric data were consistent with molecular data regarding the distinctiveness of the Elk River population. It is proposed that populations of C. asprella consist of at least four distinct population segments, and that the Elk River group likely constitutes a distinct species.  相似文献   

20.
The age and origin of the mesic coniferous forest ecosystem of the Pacific Northwest of North America have long been the subject of debate by biogeographers. Cardamine constancei, an endemic of the Rocky Mountain segment of this ecosystem, was subjected to phylogeographic analysis to test explicit hypotheses on the age of the ecosystem. We have predicted genetic homogeneity among river drainages if C. constancei and other associated species migrated into the region after glaciation, in contrast to the genetic differentiation that may have accrued if the species and its ecosystem have long survived in the relatively warm river canyons south of glaciation. We detected 19 haplotypes with divergence up to 1.5%, and they comprise 4 well-differentiated cpDNA clades. These clades are allopatric except for two haplotypes from the lower Clearwater clade that appear to have dispersed north into partial sympatry with the clade endemic to St.␣Joe River. The divergence and distribution of these clades is consistent with the existence of a complex glacial refugium with at least four compartments. The surprisingly high cpDNA diversity within this species suggests that conservation of mesic coniferous forest ecosystems in the region warrant a conservation plan that accounts for the historically imposed spatial structure of genetic diversity. We are currently testing our phylogeographic hypotheses by the comparative analyses of a suite of plants, animals and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号