首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In our previous study, we have shown that the microenvironments around conserved amino acids are also conserved in protein families (Bandyopadhyay and Mehler, Proteins 2008; 72:646–659). In this study, we have hypothesized that amino acids perform similar functions when embedded in a certain type of protein microenvironment. We have tested this hypothesis on the microenvironments around disulfide‐bridged cysteines from high‐resolution protein crystal structures. Although such cystines mainly play structural role in proteins, in certain enzymes they participate in catalysis and redox reactions. We have performed and report a functional annotation of enzymatically active cystines to their respective microenvironments. Three protein microenvironment clusters were identified: (i) buried‐hydrophobic, (ii) exposed‐hydrophilic, and (iii) buried‐hydrophilic. The buried‐hydrophobic cluster encompasses a small group of 22 redox‐active cystines, mostly in alpha‐helical conformations in a –C‐x‐x‐C‐ motif from the Oxido‐reductase enzyme class. All these cystines have high strain energy and near identical microenvironments. Most of the active cystines in hydrolase enzyme class belong to buried hydrophilic microenvironment cluster. In total there are 34 half‐cystines detected in buried hydrophilic cluster from hydrolases, as a part of enzyme active site. Even within the buried hydrophilic cluster, there is clear separation of active half‐cystines between surface exposed part of the protein and protein interior. Half‐cystines toward the surface exposed region are higher in number compared to those in protein interior. Apart from cystines at the active sites of the enzymes, many more half‐cystines were detected in buried hydrophilic cluster those are part of the microenvironment of enzyme active sites. However, no active half‐cystines were detected in extremely hydrophilic microenvironment cluster, that is, exposed hydrophilic cluster, indicating that total exposure of cystine toward the solvent is not favored for enzymatic reactions. Although half‐cystines in exposed‐hydrophilic clusters occasionally stabilize enzyme active sites, as a part of their microenvironments. Analysis performed in this work revealed that cystines as a part of active sites in specific enzyme families or folds share very similar protein microenvironment regions, despite of their dissimilarity in protein sequences and position specific sequence conservations. Proteins 2016; 84:1576–1589. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
The process of protein folding is obviously driven by forces exerted on the atoms of the amino‐acid chain. These forces arise from interactions with other parts of the protein itself (direct forces), as well as from interactions with the solvent (solvent‐induced forces). We present a statistical–mechanical formalism that describes both these direct and indirect, solvent‐induced thermodynamic forces on groups of the protein. We focus on 2 kinds of protein groups, commonly referred to as hydrophobic and hydrophilic. Analysis of this result leads to the conclusion that the forces on hydrophilic groups are in general stronger than on hydrophobic groups. This is then tested and verified by a series of molecular dynamics simulations, examining both hydrophobic alkanes of different sizes and hydrophilic moieties represented by polar‐neutral hydroxyl groups. The magnitude of the force on assemblies of hydrophilic groups is dependent on their relative orientation: with 2 to 4 times larger forces on groups that are able to form one or more direct hydrogen bonds.  相似文献   

3.
Hydrophobic association is the key contributor behind the formation of well packed core of a protein which is often believed to be an important step for folding from an unfolded chain to its compact functional form. While most of the protein folding/unfolding studies have evaluated the changes in the hydrophobic interactions during chemical denaturation, the role of hydrophilic amino acids in such processes are not discussed in detail. Here we report the role of the hydrophilic amino acids behind ethanol induced unfolding of protein. Using free energy simulations, we show that chicken villin head piece (HP‐36) protein unfolds gradually in presence of water‐ethanol binary mixture with increasing composition of ethanol. However, upon mutation of hydrophilic amino acids by glycine while keeping the hydrophobic amino acids intact, the compact state of the protein is found to be stable at all compositions with gradual flattening of the free energy landscape upon increasing compositions. The local environment around the protein in terms of ethanol/water number significantly differs in wild type protein compared to the mutated protein. The calculated Wyman‐Tanford preferential binding coefficient of ethanol for wild type protein reveals that a greater number of cosolutes (here ethanol) bind to the unfolded state compared to its folded state. However, no significant increase in binding coefficient of ethanol at the unfolded state is found for mutated protein. Local‐bulk partition coefficient calculation also suggests similar scenarios. Our results reveal that the weakening of hydrophobic interactions in aqueous ethanol solution along with larger preferential binding of ethanol to the unfolded state mediated by hydrophilic amino acids combinedly helps unfolding of protein in aqueous ethanol solution.  相似文献   

4.
Periplasmic binding protein-dependent transport systems are composed of a periplasmic substrate-binding protein, a set of 2 (sometimes 1) very hydrophobic integral membrane proteins, and 1 (sometimes 2) hydrophilic peripheral membrane protein that binds and hydrolyzes ATP. These systems are members of the superfamily of ABC transporters. We performed a molecular phylogenetic analysis of the sequences of 70 hydrophobic membrane proteins of these transport systems in order to investigate their evolutionary history. Proteins were grouped into 8 clusters. Within each cluster, protein sequences displayed significant similarities, suggesting that they derive from a common ancestor. Most clusters contained proteins from systems transporting analogous substrates such as monosaccharides, oligopeptides, or hydrophobic amino acids, but this was not a general rule. Proteins from diverse bacteria are found within each cluster, suggesting that the ancestors of current clusters were present before the divergence of bacterial groups. The phylogenetic trees computed for hydrophobic membrane proteins of these permeases are similar to those described for the periplasmic substrate-binding proteins. This result suggests that the genetic regions encoding binding protein-dependent permeases evolved as whole units. Based on the results of the classification of the proteins and on the reconstructed phylogenetic trees, we propose an evolutionary scheme for periplasmic permeases. According to this model, it is probable that these transport systems derive from an ancestral system having only 1 hydrophobic membrane protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
NMR studies on the denatured states of proteins indicate that residual structure often resides predominantly in hydrophobic clusters. Such hydrophobic cluster formation implies burial of apolar surface and, consequently, is expected to cause a decrease in heat capacity. We report here that, in the case of ribonuclease H from the thermophile Thermus thermophilus, a sharp decrease in denatured-state heat capacity occurs at about pH 3.8; this result points to the formation of hydrophobic clusters triggered by the protonation of several (about four) carboxylic acid groups, and indicates that the burial of apolar surface is favored by the less hydrophilic character of the uncharged forms of Asp and Glu side-chains. The process is not accompanied by large changes in optically active structure, but appears to be highly cooperative, as indicated by the sharpness of the pH-induced transition in the heat capacity. This acid-induced hydrophobic burial in denatured T.thermophilus ribonuclease H is clearly reflected in the pH dependence of the denaturation temperature (i.e. an abrupt change of slope at about pH 3.8 is seen in the plot of denaturation temperature versus pH), supporting a role for such denatured-state hydrophobic clusters in protein stability. The finding of cooperative protonation of several groups coupled to surface burial in denatured T.thermophilus ribonuclease H emphasizes the potential complexity of denatured-state electrostatics and advises caution when attempting to predict denatured-state properties on the basis of simple electrostatic models. Finally, our results suggest a higher propensity for hydrophobic cluster formation in the denatured state of T.thermophilus ribonuclease H as compared with that of its mesophilic counterpart from Escherichia coli.  相似文献   

6.
The sweetness-suppressing polypeptide gurmarin isolated from Gymnema sylvestre consists of 35 amino acid residues and contains three intramolecular disulfide bonds. Nuclear magnetic resonance analysis showed that the hydrophobic side chains of Tyr-13, Tyr-14, Trp-28, and Trp-29 in gurmarin are oriented outwardly. Together with the hydrophobic side chains of Leu-9, Ile-11, and Pro-12, they form a hydrophobic cluster, and therefore these hydrophobic groups are assumed to act as the site for interaction with the receptor protein. To examine the roles of these hydrophobic amino acids, they were replaced by Gly. The resulting [Gly13,14,28,29]gurmarin and [Gly9,11,13,14,28,29]gurmarin did not suppress the responses to sucrose, glucose, fructose, or Gly. This result strongly suggests that these hydrophobic amino acids are involved in the interaction with the receptor protein. © 1998 John Wiley & Sons, Inc. Biopoly 45: 231–238, 1998  相似文献   

7.
Mehdi Mirzaie 《Proteins》2018,86(4):467-474
Evaluation of protein structures needs a trustworthy potential function. Although several knowledge‐based potential functions exist, the impact of different types of amino acids in the scoring functions has not been studied yet. Previously, we have reported the importance of nonlocal interactions in scoring function (based on Delaunay tessellation) in discrimination of native structures. Then, we have questioned the structural impact of hydrophobic amino acids in protein fold recognition. Therefore, a Hydrophobic Reduced Model (HRM) was designed to reduce protein structure of FS (Full Structure) into RS (Reduced Structure). RS is considered as a reduced structure of only seven hydrophobic amino acids (L, V, F, I, A, W, Y) and all their interactions. The presented model was evaluated via four different performance metrics including the number of correctly identified natives, the Z‐score of the native energy, the RMSD of the minimum score, and the Pearson correlation coefficient between the energy and the model quality. Results indicated that only nonlocal interactions between hydrophobic amino acids could be sufficient and accurate enough for protein fold recognition. Interestingly, the results of HRM is significantly close to the model that considers all amino acids (20‐amino acid model) to discriminate the native structure of the proteins on eleven decoy sets. This indicates that the power of knowledge‐based potential functions in protein fold recognition is mostly due to hydrophobic interactions. Hence, we suggest combining a different well‐designed scoring function for non‐hydrophobic interactions with HRM to achieve better performance in fold recognition.  相似文献   

8.
The probability of occurrence of helix and β-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor β-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor β-sheet formation with hydrophilic neighbors, but most of them strongly favor β-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and β-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for β-sheets. Therefore, β-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein–protein and protein–lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.  相似文献   

9.
Silva PJ 《Proteins》2008,70(4):1588-1594
Hydrophobic cluster analysis (HCA) has long been used as a tool to detect distant homologies between protein sequences, and to classify them into different folds. However, it relies on expert human intervention, and is sensitive to subjective interpretations of pattern similarities. In this study, we describe a novel algorithm to assess the similarity of hydrophobic amino acid distributions between two sequences. Our algorithm correctly identifies as misattributions several HCA-based proposals of structural similarity between unrelated proteins present in the literature. We have also used this method to identify the proper fold of a large variety of sequences, and to automatically select the most appropriate structure for homology modeling of several proteins with low sequence identity to any other member of the protein data bank. Automatic modeling of the target proteins based on these templates yielded structures with TM-scores (vs. experimental structures) above 0.60, even without further refinement. Besides enabling a reliable identification of the correct fold of an unknown sequence and the choice of suitable templates, our algorithm also shows that whereas most structural classes of proteins are very homogeneous in hydrophobic cluster composition, a tenth of the described families are compatible with a large variety of hydrophobic patterns. We have built a browsable database of every major representative hydrophobic cluster pattern present in each structural class of proteins, freely available at http://www2.ufp.pt/ pedros/HCA_db/index.htm.  相似文献   

10.
The design of a protein folding approximation algorithm is not straightforward even when a simplified model is used. The folding problem is a combinatorial problem, where approximation and heuristic algorithms are usually used to find near optimal folds of proteins primary structures. Approximation algorithms provide guarantees on the distance to the optimal solution. The folding approximation approach proposed here depends on two-dimensional cellular automata to fold proteins presented in a well-studied simplified model called the hydrophobic–hydrophilic model. Cellular automata are discrete computational models that rely on local rules to produce some overall global behavior. One-third and one-fourth approximation algorithms choose a subset of the hydrophobic amino acids to form H–H contacts. Those algorithms start with finding a point to fold the protein sequence into two sides where one side ignores H’s at even positions and the other side ignores H’s at odd positions. In addition, blocks or groups of amino acids fold the same way according to a predefined normal form. We intend to improve approximation algorithms by considering all hydrophobic amino acids and folding based on the local neighborhood instead of using normal forms. The CA does not assume a fixed folding point. The proposed approach guarantees one half approximation minus the H–H endpoints. This lower bound guaranteed applies to short sequences only. This is proved as the core and the folds of the protein will have two identical sides for all short sequences.  相似文献   

11.
Distribution of accessible surfaces of amino acids in globular proteins   总被引:1,自引:0,他引:1  
C Lawrence  I Auger  C Mannella 《Proteins》1987,2(2):153-161
  相似文献   

12.
An artificial protein containing alternating hydrophilic–hydrophobic blocks of amino acids was designed in order to mimic the structure of synthetic multiblock copolymers. The hydrophobic block consisted of the six amino acids Ala Ile Leu Leu Ile Ile (AILLII) and the hydrophilic block of the eight amino acids Thr Ser Glu Asp Asp Asn Asn Gln (TSEDDNNQ). The coding DNA sequence of the cluster was inserted into an commercial pET 30a(+) vector using a two step strategy. The expression of the artificial protein in Escherichia coli was optimized using a temperature shift strategy. Only at cultivation temperature of 24 °C after induction expression was observed, whereas at 30 and 37 °C no target protein could be detected. Cells obtained from a 15 L bioreactor cultivation of E. coli were disintegrated by mechanical methods. Interestingly, glass bead milling and high pressure homogenization resulted in a different solubility of the target protein. The further purification was carried out by affinity chromatography using the soluble homogenized protein. Extreme conditions (6 M urea, 0.5 M NaCl) were applied in order to prevent aggregation to insoluble particles. The designer protein showed an extremely high tendency to form dimers or trimers caused by intermolecular interactions which were even not broken under the conditions of SDS–polyacrylamide gel electrophoresis, rendering the behavior during purification different from proteins usually found in nature. The protein preparation was not completely pure according to SDS–PAGE stained by Coomassie blue or silver. In MALDI-TOF-MS, nano-ESI qTOF-MS of the entire protein preparation and nano-ESI-MS after digestion by trypsin and chymotrypsin impurities were not detectable.  相似文献   

13.
We report the results of longest to date simulation on misfolding of monomeric human prion protein (HuPrP). By comparing our simulation of a partially unfolded protein to the simulation of the native protein, we observe that the native protein as well as native regions in the partially unfolded protein remain in the native state, and the unfolded regions fold back with increased extended (sheet and PP-II) conformations. The misfolded regions show increased basin hopping from non-helical basins while the amino acids locked in the helical conformation tend to stay locked in that conformation. Our results also validate the hypothesis that denaturation of helices and formation of a partially unfolded intermediate is required for misfolding as the native protein stayed in native conformation for the entire simulation. Finally, we also observe that there is no correlation between misfolding and the chemical identity of amino acids, as both hydrophobic and hydrophilic amino acids showed equal probability of sampling extensively from non-native conformations.  相似文献   

14.
Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data.  相似文献   

15.
16.
Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence.  相似文献   

17.
Correlations between genomic GC contents and amino acid frequencies were studied in the homologous sequences of 12 eubacterial genomes. Results show that amino acids encoded by GC-rich codons increases significantly with genomic GC contents, whereas opposite trend was observed in case of amino acids encoded by GC-poor codons. Further studies show all the amino acids do not change in the predicted direction according to their genomic GC pressure, suggesting that protein evolution is not entirely dictated by their nucleotide frequencies. Amino acid substitution matrix calculated among hydrophobic, amphipathic and hydrophilic amino acid groups' shows that amphipathic and hydrophilic amino acids are more frequently substituted by hydrophobic amino acids than from hydrophobic to hydrophilic or amphipathic amino acids. This indicates that nucleotide bias induces a directional changes in proteome composition in such a way that underwent strong changes in hydropathy values. In fact, significant increases in hydrophobicity values have also been observed with the increase of genomic GC contents. Correlations between GC contents and amino acid compositions in three different predicted protein secondary structures show that hydropathy values increases significantly with GC contents in aperiodic and helix structures whereas strand structure remains insensitive with the genomic GC levels. The relative importance of mutation and selection on the evolution of proteins have been discussed on the basis of these results.  相似文献   

18.
TRYPTIC PEPTIDES FROM BOVINE WHITE MATTER PROTEOLIPIDS   总被引:2,自引:1,他引:1  
Abstract— The amino acid composition of the fractions obtained after tryptic digestion of performic acid oxidized and non-oxidized white matter proteolipids was studied. The acid-soluble fraction from the tryptic digest represented between 25 and 30% of the starting material and was relatively enriched in hydrophilic amino acids and deficient in hydrophobic amino acids. The acid-soluble peptides were separated by high voltage paper electrophoresis, and the amino acid compositions of 16 peptides were determined; three additional peptides were obtained from the acid-soluble digest of the oxidized proteolipid. The sequence of 7 peptides including the N- and C-terminal peptides is reported. The results suggest that the protein is segregated into hydrophilic and hydrophobic regions and that small hydrophilic regions are separated by large hydrophobic areas.  相似文献   

19.
The smaller isoform of the GABA synthesizing enzyme glutamic acid decarboxylase, GAD65, is synthesized as a soluble protein that undergoes post-translational modification(s) in the NH2-terminal region to become anchored to the membrane of small synaptic-like microvesicles in pancreatic beta cells, and synaptic vesicles in GABA-ergic neurons. A soluble hydrophilic form, a soluble hydrophobic form, and a hydrophobic firmly membrane-anchored form have been detected in beta cells. A reversible and hydroxylamine sensitive palmitoylation has been shown to distinguish the firmly membrane-anchored form from the soluble yet hydrophobic form, suggesting that palmitoylation of cysteines in the NH2-terminal region is involved in membrane anchoring. In this study we use site-directed mutagenesis to identify the first two cysteines in the NH2-terminal region, Cys 30 and Cys 45, as the sites of palmitoylation of the GAD65 molecule. Mutation of Cys 30 and Cys 45 to Ala results in a loss of palmitoylation but does not significantly alter membrane association of GAD65 in COS-7 cells. Deletion of the first 23 amino acids at the NH2 terminus of the GAD65 30/45A mutant also does not affect the hydrophobicity and membrane anchoring of the GAD65 protein. However, deletion of an additional eight amino acids at the NH2 terminus results in a protein which is hydrophilic and cytosolic. The results suggest that amino acids 24-31 are required for hydrophobic modification and/or targeting of GAD65 to membrane compartments, whereas palmitoylation of Cys 30 and Cys 45 may rather serve to orient or fold the protein at synaptic vesicle membranes.  相似文献   

20.
We characterize and describe for the first time the primary structure of a human porin with the molecular mass of 31 kDa derived from the plasmalemm of B-lymphocytes (Porin 31HL). Porin 31HL is shown to be a basic, channel forming membrane protein. The protein chain is composed of 282 amino acids with a relative molecular mass of 30641 Da without derivatisation. It is not a glycoprotein. The N-terminus is acetylated. Altogether the amino-acid sequence shows 56% hydrophilic or charged amino acids arranged in alternating regions of hydrophilic or hydrophobic character as it is typical for porins. In addition the 18 N-terminal amino acids of Porin 31HL can be arranged to an amphilic alpha-helix like in other porins. Porin 31HL shows approx. 29% or 24% identity to the primary structure of mitochondrial porins of Neurospora crassa and Saccharomyces cerevisiae. Partial data on mitochondrial porins from rat kidney and beef heart show sequence identity of about 90% to the human B cell porin elaborated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号