首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Populations of many seabirds and other species that nest along coasts are declining due to habitat degradation and loss. An improved understanding of the species‐specific factors that determine nest density across a landscape is therefore critical for conservation efforts. We examined factors that affected the density (number per hectare) and abundance (number at a sampling site) of nests of Little Terns (Sternula albifrons) on the Sinai Peninsula, Egypt. Terns preferred to nest on islands rather than the mainland, with islands constituting 64% of the area surveyed, but containing 99% of the 439 tern nests we found. Nest densities were highest on islands that were small, located at moderate distances from the mainland, and irregularly shaped or elongated. Most nests (69%) were on islands with areas < 3 ha, although these islands represented < 5% of total island area, and islands with the highest nest densities were 80–300 m from the mainland. Terrestrial predators were more likely to occur on larger islands, visiting three of the largest four islands. Most tern nests were within 1 m of shorelines, causing island perimeter to be a strong influence on nest density. Island shape was the only factor that significantly affected nest abundance, with more nests on islands with relatively long perimeters for their size. Our results suggest that protection or creation of relatively small, slender islands at moderate distances from shore may be an effective means of increasing the number of breeding sites for Little Terns. Although not generally considered a potential determinant of nest site preferences for seabirds, island shape is likely to be important for species that prefer sites adjacent to water, including species that nest on beaches and seaside cliffs.  相似文献   

2.
Louette, M., Stevens, J. & Neri, F. 2000. Abundance and habitat choice as an indication of colonisation history in Comoro Land birds. Ostrich 71 (1 & 2): 345–346.

We measured bird abundance and habitat parameters by point transect counts. Bird abundance is different for a number of species among the four Comoro islands (Louette, M. et al. 1993. Oiseau 63: 115–126), and among sites on a given island (especially in the case of forest birds, such as on Grand Comoro, an island with great variation in habitat).  相似文献   

3.
Invasive species pose significant threats to biodiversity, especially on islands. They cause extinctions and population declines, yet little is known about their consequences on the emergent, metacommunity-level patterns of native species in island assemblages. We investigated differences in species–area relationships, nestedness, and occupancy of 9 species of native land birds between island assemblages with and without invasive Norway rats (Rattus norvegicus) in the Falkland Archipelago. We found that species–area curves, nestedness, and individual species’ occurrences differed between island assemblages with and without rats. Rat-free islands had, on average, 2.1 more land bird species than rat-infested islands of similar size. Passerine bird communities on islands with and without rats were significantly nested, but nestedness was significantly higher on rat-free islands than on rat-infested islands. The presence of rats was associated with differences in the incidence of many, but not all bird species. On rat free islands the occurrence of all species increased with island area. The occurrence of most, albeit not all, bird species was lower on islands with than on islands without rats. Two species of conservation concern, Troglodytes aedon cobbi and Cinclodes antarcticus, were abundant on rat-free islands, but absent or found at very low frequencies on islands with rats. The occurrence of three species was not associated with the presence of rats. The patterns presented here can be used to evaluate the consequences of ongoing rat eradications for passerine diversity, distribution, and abundance.  相似文献   

4.
Aim We consider three hypotheses – MacArthur and Wilson’s island biogeography theory (IBT), Lack’s habitat diversity idea and the ‘target effect’– that explain the pattern of decreased species richness on small and distant islands. Location We evaluate these hypotheses using a detailed dataset on the occurrence and abundance of terrestrial birds on nine islands off the coast of Britain and the Republic of Ireland. Methods  Unlike previous studies, we compile data on species that visit the islands, rather than just those that breed on them. We divided the species into five mutually exclusive categories based upon their migratory status and where they regularly breed: British residents, summer visitors to Britain, winter visitors to Britain, and vagrants from Europe or beyond Europe. For each species group on each island we calculated the average number of species visiting each year. We then regressed the average number of species against island area and distance to the mainland (all variables were log‐transformed). We also compared the average number of species visiting each island with the average number of species breeding on each island. Results  Average number of visiting British residents decreased significantly with increasing island distance, but showed no relationship with island area. There was no significant relationship between island area or island distance and average number of summer or winter visitors. European and non‐European vagrants likewise showed no relationship between numbers of species visiting and island distance. However, the relationship between island area and number of visiting species was significant for both these categories; as island area increases so too does the number of visiting species. Main conclusions  As predicted by IBT, there were fewer visiting species on more distant islands. There were substantially more visitors to each island than breeding species, supporting Lack’s argument that lower bird richness is not a result of varying immigration rates (as predicted by IBT) but rather a result of some other island property, e.g. fewer resources. Birds make a decision to either leave an island or stay and breed. The target effect was also clearly demonstrated by the increase in European and non‐European breeders with increasing island size.  相似文献   

5.
Two processes are thought to generate positive relationships between species richness and island area. The areaper se hypothesis states that larger islands maintain larger populations, which are less susceptible to extinction. The habitat hypothesis states that larger islands contain more habitats, and therefore a greater number of habitat specialists. However, the importance of each mechanism is debated. I tested the areaper se and habitat hypotheses by comparing relationships between plant abundance, age and island area in five shrub species on islands off the coast of British Columbia, Canada. Results showed that two shrub species increased in both abundance and age with island area. The remaining three species showed no differences in abundance and age with island area. Conifer abundances increased with island area, which generated differences in habitat availability. Smaller islands were dominated by open habitat, while larger islands contained both open and forested habitats. Changes in habitat availability with island area could explain patterns in plant abundance and age. The two species that increased in abundance with island area were commonly found in conifer forest on the mainland, and their distributions were consistent with the distribution forest habitat. Positive relationships between plant age and island area in these two species may result from lower survivorship in the open habitat, which dominated small islands. The three species that showed no relationship between abundance and island area are commonly found in open habitat on the mainland, and their island distributions paralleled the availability of open habitat on islands. Similar plant ages on different sized islands may result from their occurrence in open habitat on both large and small islands. Overall results support the habitat hypothesis and indicate that species distributions result from the interaction between habitat affinities and changes in habitat availability with island area.  相似文献   

6.
A qualitative survey of the terrestrial bird community (sixty-five species) and a quantitative analysis of the five-diurnal raptor assemblage were earned out on 33 islands of the oceanic Andaman archipelago in the Bay of Bengal Among seven geographical parameters, island area was the main determinant of species richness for both the whole bird community and each category of species associated with four habitat types Species richness decreased most markedly with island size in the smallest islands and in open habitat species The rarest forest species were the most extinction prone with decreasing island size Specific habitat selection was the most prominent ecological correlate of inter island species distribution Observed species distribution patterns did not fit the random species placement or equprobable occurrence hypotheses Raptors were primarily forest species, two of them restricted to forest interior, two more tolerant of fragmentation and one naturally associated with mangroves Unexpectedly, the two rarest and most area sensitive raptors were the two smallest species with a strong active flight, whereas the most abundant and widespread species was the most forest interior and endemic taxon Both raptor species richness, species frequency of occurrence and abundance indices decreased with island area, which was consistently the most significant determinant of every species' occurrence and abundance There was a significant correlation between abundance or frequency of occurrence of every raptor species and the proportion of their preferred habitat type No relationship was found between habitat niche breadth or local abundance of any species and their distribution range among islands The hypothesis of random composition of species assemblages on islands was not supported because of species specific habitat selection Any evidence of interspecific competitive exclusion was limited to the striking habitat segregation of the two congeneric serpent eagles A metapopulation structure was suggested by small population distribution patterns, observed sea crossing and the circumstances of an apparent extinction  相似文献   

7.
Jan Pinowski 《Bird Study》2013,60(1):27-33
Capsule Low and variable encounter rates of birds in fragmented arctic‐alpine habitats add difficulty to monitoring their breeding populations.

Aims To quantify seasonal variation in the encounter rates (apparent abundance) of breeding birds in arctic‐alpine habitats in Scotland.

Methods Birds were sampled from 15 repeated linear transects between April and August in 2005 and 2006. glmms (and for scarcer species glms) were used to investigate how the apparent abundance of different species varied between months and years.

Results Three arctic‐alpine specialists (Rock Ptarmigan, Eurasian Dotterel and Snow Bunting) were recorded. The 24 other species recorded included more widely distributed upland species, generalists that also used arctic‐alpine habitats and also some transient species from lower altitude. Overall encounter rates were low (only exceeding 1 bird km?1 in any month for one species; Meadow Pipits) with marked variation between months. The pattern of seasonal variation in encounter rates varied markedly between species.

Conclusions Low encounter rates and marked variation in apparent abundance will render more difficult efforts to monitor birds in marginal and fragmented areas of arctic‐alpine habitats. Particularly relevant is the potential for changes in the timing of breeding and seasonal movements to influence encounter rates and be falsely interpreted as changes in actual abundance. Monitoring in arctic‐alpine habitats should include both specialist and non‐specialist birds of that habitat, as the latter may be more numerous and, therefore, provide supplementary evidence of temporal or seasonal change.  相似文献   

8.
Farmland birds are important indicators of the state of biodiversity in rural landscapes, and the occurrence and abundance of birds contribute to their importance as bioindicators. However, the measurement of farmland bird abundance can be difficult. The rapid growth of crop plants in the spring combined with disturbances related to farming practices, such as weed and pest control and other measures, can profoundly change the habitat suitability of arable fields for birds within a short period of time. Consequently, the existing dynamics must be incorporated into the applied methods, and a single value of bird abundance during the breeding season is insufficient to characterise the habitat functions of arable land. The abundance of farmland bird species is influenced by crop specific features, which profoundly change within the breeding season and which we have described using a novel concept called Moving Window Abundance. Based on field surveys in 29 observation areas within arable landscapes, each 1 km2, Skylark with territorial behaviour were counted using a mapping method related to the habitats and growth of field crops, such as wheat and maize. To describe the dynamic characteristics of the abundance during the breeding season over the time period from 16 March to 18 July, three methods of Moving Window Abundance were tested: patchy, adjacent and overlapping. These methods differ in the time-space continuity of the considered time window throughout the breeding season. In the Patchy Moving Window Abundance method, we used the exact days in which field surveys were conducted throughout the entire time period of the field surveys. However, with the Adjacent Moving Window Abundance method, the time window included five-day, ten-day and semi-monthly adjacent windows; in the Overlapping Moving Window Abundance method, the time window shifted daily, with five-day, ten-day and semi-monthly overlapping windows used in the calculation procedure. The results indicated that the dynamic nature of Skylark abundance (i) reached a maximum level in the first breeding period in the agricultural landscape and (ii) exhibited large variations in level and time within the various field crops. Therefore, abundance was not described conventionally using a single numerical value but rather using mathematical functions based on the spatial scale of the landscape and habitat. We conclude with recommendations for further research to standardise farmland bird monitoring.  相似文献   

9.
Yrjö Haila 《Ecography》1981,4(3):174-183
The distribution of wintering land birds was examined in the archipelago of Åland (60°N, 20°E) along two ecological dimensions: (1) the island continuum from small skerries ((0.5 ha) to the mainland of Åland (97000 ha), and (2) the habitat range of the mainland of Åland. In the species-area relationship, both the exponential and power function models fitted well. The increase of the number of species with island size was interpreted as a consequence of increasing habitat diversity on larger islands. The smallest islands supported only few seed-eating species utilizing the islands in a fine-grained fashion; none of these birds belonged to the breeding fauna of the islands. With increasing island size and habitat diversity, insectivores and species tied to the human culture were added. On the mainland of Åland, more than half of the birds were observed near human habitations: bird communities wintering in pine forests were richer than in deciduous forests. Proportion of wintering species was greatest in the breeding communities of pine forests. The proportion of wintering species was presumably regulated by the degree of structural change in the habitat between summer and winter, this change being most drastic in deciduous habitats The species observed could be broadly classified into three feeding categories: opportunists ., omnivores and scavengers, dependent on the diverse food items provided by man; food specialists , species éating seeds and berries, ranging widely in the islands and habitats; and insectivorous habitat specialists , inhabiting coniferous habitats, and islands with coniferous (pine) forests. Opportunists, in particular, gel increasing wintering opportunities by the impact of man.  相似文献   

10.
Kevin C. Burns 《Ecography》2005,28(4):552-560
Constraints on plant distributions resulting from seed limitation (i.e. dispersal filters) were evaluated on two scales of ecological organization on islands off the coast of British Columbia, Canada. First, island plant communities were separated into groups based on fruit morphology, and patterns in species diversity were compared between fruit‐type groups. Second, abundance patterns in several common fleshy‐fruited, woody angiosperm species were compared to species‐specific patterns in seed dispersal by birds. Results from community‐level analyses showed evidence for dispersal filters. Dry‐fruited species were rare on islands, despite being common on the mainland. Island plant communities were instead dominated by fleshy‐fruited species. Patterns in seed dispersal were consistent with differences in diversity, as birds dispersed thousands of fleshy‐fruited seeds out to islands, while dry fruited species showed no evidence of mainland‐island dispersal. Results from population‐level analyses showed no evidence for dispersal filters. Population sizes of common fleshy‐fruited species were unrelated to island isolation, as were rates of seed dispersal. Therefore, island isolation distances were not large enough to impose constraints on species’ distributions resulting from seed limitation. Rates of seed dispersal were also unrelated to island area. However, several species increased in abundance with island area, indicating post‐dispersal processes also help to shape species distributions. Overall results suggest that seed dispersal processes play an important role in determining the diversity and distribution of plants on islands. At the community‐level, dry‐fruited species were seed limited and island communities were instead dominated by fleshy‐fruited species. At the population‐level, common fleshy‐fruited species were not seed limited and showed few differences in distribution among islands. Therefore, although evidence for dispersal filters was observed, their effects on plant distributions were scale‐dependent.  相似文献   

11.
Beta diversity describes changes in species composition among sites in a region and has particular relevance for explaining ecological patterns in fragmented habitats. However, it is difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical values under nestedness and species replacement) are used. Partitioning beta diversity into turnover (caused by species replacement from site to site) and nestedness-resultant components (caused by nested species losses) could provide a unique way to understand the variation of species composition in fragmented habitats. Here, we collected occupancy data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern China. We decomposed beta diversity of breeding bird and lizard communities into spatial turnover and nestedness-resultant components to assess their relative contributions and respective relationships to differences in island area, isolation, and habitat richness. Our results showed that spatial turnover contributed more to beta diversity than the nestedness-resultant component. The degree of isolation had no significant effect on overall beta diversity or its components, neither for breeding birds nor for lizards. In turn, in both groups the nestedness-resultant component increased with larger differences in island area and habitat richness, respectively, while turnover component decreased with them. The major difference among birds and lizards was a higher relevance of nestedness-resultant dissimilarity in lizards, suggesting that they are more prone to local extinctions derived from habitat fragmentation. The dominance of the spatial turnover component of beta diversity suggests that all islands have potential conservation value for breeding bird and lizard communities.  相似文献   

12.
This paper summarizes succession studies on the outer islands of the Bothnian Bay (Finland). The study area is characterized by consistent and relatively rapid uplift (vertical rise on average 75 cm per century). The spatial and temporal succession has been deduced from the sequence of the littoral and epilittoral vegetation as well as from the historical records of the island development.Four types of successional series are distinguished. The relationships between substrate type (boulder, gravel, sand and clay-silt shores) and 25 typical plant communities are outlined and treated as successional sequences.  相似文献   

13.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

14.
Mutual relationships between sea colonial birds and plants on the northern shore of the Sea of Okhotsk are considered. The birds form huge flocks on small islands thus transforming the island landscape and providing specific vegetation at nesting sites. The intensity of ornithogenic load determines different relations between the productivity of plant communities and their species richness. As a rule, flora is depleted. The plants thriving at rookeries react to the intensive action of birds by forming specific ecobiomorphs. On the islands of the northern part of the Sea of Okhotsk tussocks of pine purple grass existing on the majority of nesting colonies are of the highest significance.  相似文献   

15.
We reviewed published and unpublished literature to establish the status of the breeding distribution and abundance of Southern Fulmars Fulmarus glacialoides. The species breeds widely throughout the Antarctic and on peri-Antarctic islands. From breeding population data collated from 73 of these localities, we estimated the minimum global population to be about 400,000 breeding pairs. After adjusting for seasonal variation in numbers of breeding pairs based on studies at Ardery Island, East Antarctica, the total global population is estimated to be at least one million breeding pairs. Of this, 72% nest on islands of the Scotia Sea arc and the South Atlantic Ocean. The precision of the estimate on the total number of breeding pairs is low, as several colony estimates were only available as orders of magnitude. Furthermore, different timing of the surveys and the difficulties of censusing colonial cliff-nesting birds reduced the count accuracy. Currently, there are no known threats to the global population, although the effects of fishery activities are not fully known.  相似文献   

16.
Abstract. Early-successional stages of woody vegetation on gravel bars were studied in an island-braided section of the River Tagliamento in northeastern Italy. We mapped landscape-level changes in the study area (125 ha) by GIS-based analysis of aerial photographs for two time periods (1984–1986, 1986–1991); we surveyed island vegetation, and estimated island age by tree ring analysis. The study area experienced considerable changes between 1984 and 1991 due to at least two major floods in 1987 and 1990. The development of woody vegetation on bars follows three distinct phases: (1) gravel bars plus large woody debris (LWD), (2) pioneer islands, and (3) established islands. Established islands have sections dominated by shrubs of Salix elaeagnos, S. purpurea, S. daphnoides and S. triandra, and tree-dominated sections with Populus nigra, Salix alba and Alnus incana. Large woody debris seems to play a key role for plant colonization on gravel bars. The succession from bars to established islands took about 10 - 20 yr, and the probability of an island being washed away decreased with island age. Erosion produced new LWD which again initiated successional processes in the active zone of the river. Most species were already present in the early-successional stages, although the number of species increased with island development. Established islands were characterized by a distinctive species composition, including an assemblage of species less tolerant of inundation. The results are discussed within the framework of island dynamics and its significance for restoration of early-successional habitats in more regulated rivers.  相似文献   

17.
Determining the geographic connections between breeding and nonbreeding populations, termed migratory connectivity, is critical to advancing our understanding of the ecology and conservation of migratory species. Assignment models based on stable isotopes historically have been an important tool for studying migratory connectivity of small‐bodied species, but the low resolution of these assignments has generated interest into combining isotopes with other sources in information. Abundance is one of the most appealing data sources to include in isotope‐based assignments, but there are currently no statistical methods or guidelines for optimizing the contribution of stable isotopes and abundance for inferring migratory connectivity. Using known‐origin stable‐hydrogen isotope samples of six Neotropical migratory bird species, we rigorously assessed the performance of assignment models that differentially weight the contribution of the isotope and abundance data. For two species with adequate sample sizes, we used Pareto optimality to determine the set of models that simultaneously minimized both assignment error rate and assignment area. We then assessed the ability of the top models from these two species to improve assignments of the remaining four species compared to assignments based on isotopes alone. We show that the increased precision of models that include abundance is often offset by a large increase in assignment error. However, models that optimally weigh the abundance data relative to the isotope data can result in higher precision and, in some cases, lower error than models based on isotopes alone. The top models, however, depended on the distribution of relative breeding abundance, with patchier distributions requiring stronger downweighting of abundance, and we present general guidelines for future studies. These results confirm that breeding abundance can be an important source of information for studies investigating broad‐scale movements of migratory birds and potentially other taxa.  相似文献   

18.
The island species–area relationship (ISAR) describes how the number of species increases with increasing size of an island (or island‐like habitat), and is of fundamental importance in island biogeography and conservation. Here, we use a framework based on individual‐based rarefaction to infer whether ISARs result from passive sampling, or whether some processes are acting beyond sampling (e.g., disproportionate effects and/or habitat heterogeneity). Using data on total and relative abundances of four taxa (birds, butterflies, amphibians, and reptiles) from multiple islands in the Andaman and Nicobar archipelago, we examine how different metrics of biodiversity (total species richness, rarefied species richness, and abundance‐weighted effective numbers of species emphasizing common species) vary with island area. Total species richness increased for all taxa, as did rarefied species richness controlling for a given sampling effort. This indicates that the ISAR did not result because of passive sampling, but that instead, some species were disproportionately favored on larger islands. For birds, frogs, and lizards, this disproportionate effect was only associated with species that were rarer in the samples, but for butterflies, both more common and rarer species were affected. Furthermore, for the two taxa for which we had plot‐level data (reptiles and amphibians), within‐island β‐diversity did not increase with island size, suggesting that within‐island compositional effects were unlikely to be driving these ISARs. Overall, our results indicate that the ISARs of these taxa are most likely driven by disproportionate effects, that is, where larger islands are important sources of biodiversity beyond a simple sampling expectation, especially through their influence on rarer species, thus emphasizing their role in the preservation and conservation of species.  相似文献   

19.
The island biogeography of exotic bird species   总被引:1,自引:0,他引:1  
Aim   A recent upsurge of interest in the island biogeography of exotic species has followed from the argument that they may provide valuable information on the natural processes structuring island biotas. Here, we use data on the occurrence of exotic bird species across oceanic islands worldwide to demonstrate an alternative and previously untested hypothesis that these distributional patterns are a simple consequence of where humans have released such species, and hence of the number of species released.
Location   Islands around the world.
Methods   Statistical analysis of published information on the numbers of exotic bird species introduced to, and established on, islands around the world.
Results   Established exotic birds showed very similar species–area relationships to native species, but different species–isolation relationships. However, in both cases the relationship for established exotics simply mimicked that for the number of exotic bird species introduced. Exotic bird introductions scaled positively with human population size and island isolation, and islands that had seen more native species extinctions had had more exotic species released.
Main conclusion   The island biogeography of exotic birds is primarily a consequence of human, rather than natural, processes.  相似文献   

20.
The aim was to uncover factors that influence short-term (decade) flora dynamics and species richness of northern marine islets characterized by poor flora and weak anthropogenic pressure. The study used presence–absence data of vascular plant species on 100 small uprising islets of the Kandalaksha Gulf of White Sea (Northern Karelia, Russia). We investigated the influence of islands' attributes on species richness and rates of flora dynamics. Two island types were analyzed separately: younger, stone-like and older, islet-like (which generally are larger and have higher diversity of habitats). Sampled islands were studied via classical biogeographical per island approach and metapopulation per species approach. Stone-like islands had noticeably poorer flora with higher rates of immigration and extinction when compared to those of islet-like islands. The species number for islet-like islands correlated positively with number of habitats, abundance of different habitat types and island area. Species richness of stone-like islands correlated positively only with number of habitat types. Plant species associated with birds, crowberry thickets and coastal rocks were the most stable, and the species of disturbed habitats were significantly less stable. Floristic changes that have occurred have been caused by the massive establishment of new species rather than the extinction of pre-existing taxa. Thus, most of these islands are still in the colonization (assortative) stage. While we found no relationship between island area and species number for stone-like islands, this relationship was seen on islet-like islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号