首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although diurnal birds of prey have historically been placed in a single order due to a number of morphological characters, recent molecular phylogenies have suggested that this is a case of convergence rather than homology, with hawks (Accipitridae) and falcons (Falconidae) forming two distantly related groups within birds. The feather lice of birds have often been used as a model for comparing host and parasite phylogenies, and in some cases there is significant congruence between the two. Thus, studying the phylogeny of the lice of diurnal raptors may be of particular interest with respect to the independent evolution of hawks vs. falcons. Using one mitochondrial gene and three nuclear genes, we inferred a phylogeny for the feather louse genus Degeeriella (which are all obligate raptor ectoparasites) and related genera. This phylogeny indicated that Degeeriella is polyphyletic, with lice from falcons vs. hawks forming two distinct clades. Falcon lice were sister to lice from African woodpeckers, whereas Capraiella, a genus of lice from rollers lice, was embedded within Degeeriella from hawks. This phylogeny showed significant geographical structure, with host geography playing a larger role than host taxonomy in explaining louse phylogeny, particularly within clades of closely related lice. However, the louse phylogeny does reflect host phylogeny at a broad scale; for example, lice from the hawk genus Accipiter form a distinct clade. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 837–847.  相似文献   

2.
Studies of major switches by parasites between highly divergent host lineages are important for understanding new opportunities for parasite diversification. One such major host switch is inferred for avian feather lice (Ischnocera) in the family Goniodidae, which parasitize two distantly‐related groups of birds: Galliformes (pheasants, quail, partridges, etc.) and Columbiformes (pigeons and doves). Although there have been several cophylogenetic studies of lice at the species level, few studies have focused on such broad evolutionary patterns and major host‐switching events. Using a phylogeny based on DNA sequences for goniodid feather lice, we investigated the direction of this major host switch. Unexpectedly, we found that goniodid feather lice have switched host orders, not just once, but twice. A primary host switch occurred from Galliformes to Columbiformes, leading to a large radiation of columbiform body lice. Subsequently, there was also a host switch from Columbiformes back to Galliformes, specifically to megapodes in the Papua–Australasian region. The results of the present study further reveal that, although morphologically diagnosable lineages are supported by molecular data, many of the existing genera are not monophyletic and a revision of generic limits is needed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 614–625.  相似文献   

3.
Pocket gophers and their symbiotic chewing lice form a host–parasite assemblage known for a high degree of cophylogeny, thought to be driven by life history parameters of both host and parasite that make host switching difficult. However, little work to date has focused on determining whether these life histories actually impact louse populations at the very fine scale of louse infrapopulations (individuals on a single host) at the same or at nearby host localities. We used microsatellite and mtDNA sequence data to make comparisons of chewing‐louse (Thomomydoecus minor) population subdivision over time and over geographic space where there are different potential amounts of host interaction surrounding a zone of contact between two hybridizing pocket‐gopher subspecies. We found that chewing lice had high levels of population isolation consistent with a paucity of horizontal transmission even at the very fine geographic scale of a single alfalfa field. We also found marked genetic discontinuity in louse populations corresponding with host subspecies and little, if any, admixture in the louse genetic groups even though the lice are closely related. The correlation of louse infrapopulation differentiation with host interaction at multiple scales, including across a discontinuity in pocket‐gopher habitat, suggests that host behaviour is the primary driver of parasite genetics. This observation makes sense in light of the life histories of both chewing lice and pocket gophers and provides a powerful explanation for the well‐documented pattern of parallel cladogenesis in pocket gophers and chewing lice.  相似文献   

4.
Gustafsson  Daniel R..  Tian  Chunpo  Yu  Xiaoping  Xu  Lulu  Wu  Si  Zou  Fasheng 《Biodiversity and Conservation》2021,30(13):3939-3963

The crested ibis has survived a dramatic population decline during the twentieth century, declining from a range across much of China, Japan, the Korean peninsula and nearby Russia, to a known world population of seven individuals. These formed the basis of a successful breeding program in Shaanxi, China. We examined ibises in this breeding program for ectoparasites, to establish whether any of the three chewing louse species known from this host had survived this severe host population bottleneck. We recovered representatives of three species of lice, identified as the same species as those previously known from the wild populations: Ardeicola nippon, Colpocephalum nipponi, and Ibidoecus meinertzhageni. Of these, the two first species were recovered from almost all examined hosts, whereas I. meinertzhageni was more rare. As these lice are host specific, this implies that all three louse species remarkably survived this bottleneck, and are now thriving in both the reintroduced and captive populations of crested ibis. This constitutes an unintentional success story in the conservation of parasitic species. We provide the first photos of all three species, as well as a preliminary assessment of their conservation status, and discuss the future of chewing louse conservation.

  相似文献   

5.
6.
Understanding both sides of host–parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host–parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole‐genome sequencing to obtain hundreds of genes and thousands of single‐nucleotide polymorphisms (SNPs) for the lice and double‐digest restriction‐associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.  相似文献   

7.
Compared with Europe and the Americas, the ectoparasites of African birds are poorly understood, despite the avian fauna being relatively well known. Notably, previous studies documenting the host associations and genetic diversity of parasitic chewing lice of southern African birds have been limited in geographic and taxonomic scope. Recent field expeditions exploring the avian diversity in South Africa facilitated an opportunity to obtain louse specimens from a taxonomically diverse host assemblage. This study is the first to investigate avian louse host associations and diversity across a large portion of South Africa encompassing several distinct habitat types, while incorporating molecular genetic data (from portions of the mitochondrial COI and nuclear EF‐1α genes) for ectoparasite phylogenetic analyses. From 1105 South African bird individuals and 170 species examined for lice, a total of 105 new louse–host associations were observed. Morphological and genetic examination of lice with these new host associations reveals a maximum of 66 louse species new to science. Results of this study support the observation that examining museum specimens is a useful way to investigate louse diversity and host associations.  相似文献   

8.
D. H. Clayton  B. A. Walther 《Oikos》2001,94(3):455-467
Host‐parasite systems can be powerful arenas in which to explore factors influencing community structure. We used a comparative approach to examine the influence of host ecology and morphology on the diversity of chewing lice (Insecta: Phthiraptera) among 52 species of Peruvian birds. For each host species we calculated two components of parasite diversity: 1) cumulative species richness, and 2) mean abundance. We tested for correlations between these parasite indices and 13 host ecological and morphological variables. Host ecological variables included geographic range size, local population density, and microhabitat use. Host morphological variables included body mass, plumage depth, and standard dimensions of bill, foot and toenail morphology, all of which could influence the efficiency of anti‐parasite grooming. Data were analysed using statistical and comparative methods that control for sampling effort and host phylogeny. None of the independent host variables correlated with louse species richness when treated as a dependent variable. When richness was treated as an independent variable, however, it was positively correlated with mean louse abundance. Host body mass was also positively correlated with mean louse abundance. When louse richness and host body mass were held constant, mean louse abundance correlated negatively with the degree to which the upper mandible of the host's bill overhangs the lower mandible. This correlation suggests that birds with longer overhangs are better at controlling lice during preening. We propose a specific functional hypothesis in which preening damages lice by exerting a shearing force between the overhang and the tip of the lower mandible. This study is the first to suggest a parasite‐control function of such a detailed component of bill morphology across species. Avian biologists have traditionally focused almost exclusively on bills as tools for feeding. We suggest that the adaptive radiation of bill morphology should be reinterpreted with both preening and feeding in mind.  相似文献   

9.
The louse genus Carduiceps Clay & Meinertzhagen, 1939 is widely distributed on sandpipers and stints (Calidrinae). The current taxonomy includes three species on the Calidrinae (Carduiceps meinertzhageni, Carduiceps scalaris, Carduiceps zonarius) and four species on noncalidrine hosts. We estimated a phylogeny of four of the seven species of Carduiceps (the three mentioned above and Carduiceps fulvofasciatus) from 13 of the 29 hosts based on three mitochondrial loci, and evaluated the relative importance of flyway differentiation (same host species has different lice along different flyways) and flyway homogenization (different host species have the same lice along the same flyway). We found no evidence for either process. Instead, the present, morphology‐based, taxonomy of the genus corresponds exactly to the gene‐based phylogeny, with all four included species monophyletic. Carduiceps zonarius is found both to inhabit a wider range of hosts than wing lice of the genus Lunaceps occurring on the same group of birds, and to occur on Calidris sandpipers of all sizes, both of which are unexpected for a body louse. The previously proposed family Esthiopteridae is found to be monophyletic with good support. The concatenated dataset suggests that the pigeon louse genus Columbicola may be closely related to the auk and diver louse genus Craspedonirmus. These two genera share some morphological characters with Carduiceps, but no support was obtained for grouping these three genera together. Based on mitochondrial data alone, the relationships among genera within this proposed family cannot be properly assessed, but some previously suggested relationships within this proposed family are confirmed.  相似文献   

10.
The relative effects of host species identity, locality and season on ectoparasite assemblages (relative abundances and species richness) harboured by four cricetid rodent hosts (Akodon azarae, Oligoryzomys flavescens, Oxymycterus rufus and Scapteromys aquaticus) were assessed across six closely located sites in Buenos Aires province, Argentina. Relative abundances of ectoparasites (14 species including gamasid mites, an ixodid tick, a trombiculid mite, lice and fleas), as well as total ectoparasite abundance and species richness, were determined mainly by host species and to a lesser extent by locality (despite the small spatial scale of the study), whereas seasonal effect was weak, albeit significant. The abundances of some ectoparasites were determined solely by host, whereas those of other ectoparasites (sometimes belonging to the same higher taxon) were also affected by locality and/or season. In gamasids, there was a significant effect of locality for some species, but not for others. In fleas and lice, the effect of locality was similar in different species, suggesting that this effect is related to the characteristic life history strategy.  相似文献   

11.
Although molecular-based phylogenetic studies of hosts and parasites are increasingly common in the literature, no study to date has examined two congeneric lineages of parasites that live in sympatry on the same lineage of hosts. This study examines phylogenetic relationships among chewing lice (Phthiraptera: Trichodectidae) of the Geomydoecus coronadoi and Geomydoecus mexicanus species complexes and compares these to phylogenetic patterns in their hosts (pocket gophers of the rodent family Geomyidae). Sympatry of congeneric lice provides a natural experiment to test the hypothesis that closely related lineages of parasites will respond similarly to the same host. Sequence data from the mitochondrial COI and the nuclear EF-1alpha genes confirm that the two louse complexes are reciprocally monophyletic and that individual clades within each species complex parasitize a different species of pocket gopher. Phylogenetic comparisons reveal that both louse complexes show a significant pattern of cophylogeny with their hosts. Comparisons of rates of nucleotide substitution at 4-fold degenerate sites in the COI gene indicate that both groups of lice have significantly higher basal mutation rates than their hosts. The two groups of lice have similar basal rates of mutation, but lice of the G. coronadoi complex show significantly elevated rates of nucleotide substitution at all sites. These rate differences are hypothesized to result from population-level phenomena, such as effective population size, founder effects, and drift, that influence rates of nucleotide substitution.  相似文献   

12.
Chewing lice of the species Docophorulus coarctatus were extracted from museum specimens of their host, the great grey shrike Lanius excubitor, by combing feathers from 36 freshly shot birds (shot between 1962 and 1974), and samples of ten individual lice (five female, five male) were randomly collected for measurements from each bird. Female lice were bigger than males for all studied measurements (P < 0.001 in all cases), although the size of both sexes obtained from individual hosts was positively correlated. The overall size of lice (derived from a principal components analysis) was positively correlated with the overall size of the avian host, and also with the population density of lice on the individual host. We suggest that variation in louse morphology is due to differences in selection pressure exerted by each host and by intraspecific competition due to conspecifics. This is, to the best of our knowledge, the first evidence that Harrison’s rule (parasites on larger host species are often bigger than those on smaller hosts) not only works in a multispecies comparison but also within a single host–single parasite system as well.  相似文献   

13.
吸虱是寄生于真兽类哺乳动物体表的专性吸血寄生虫,广布于世界各地。云南省已知吸虱昆虫9科13属44种,分别占中国已知吸虱科、属、种的81.82%,59.09%,45.83%。文章参考大量相关文献,从分类阶元、特有物种、动物地理区划和宿主动物4个方面分析云南省吸虱的物种多样性。云南省吸虱特有种有13种,占云南省已知吸虱种类的29.55%,27种为东洋种,15种为古北和东洋两界兼有种,广布种9种。吸虱在5个地理小区的分布,以横断山中部和横断山南部2个地理小区的吸虱物种多样性较高,其它3个区的物种多样性较低。相对于全国而言,云南省吸虱物种多样性较高,吸虱的宿主动物种类丰富。但蚤、恙螨和革螨等其它体表寄生虫相比较,兽类宿主动物体表吸虱的物种多样性明显低于其它体表寄生虫,1科(属)阶元的吸虱其宿主多为相对一致的1个科(属)动物阶元,反映了吸虱宿主特异性较高的事实,吸虱昆虫与其对应的宿主动物已经形成了比较稳定的"一对一"的寄生关系,这是吸虱昆虫与其宿主动物协同进化的生态学表现。  相似文献   

14.
Lice are considered a model system for studying the process of cospeciation because they are obligate and permanent parasites and are often highly host‐specific. Among lice, species in the family Echinophthiriidae Enderlein (Anoplura) are unique in that they infest mammalian hosts with an amphibious lifestyle, i.e. pinnipeds and the river otter. There is evidence that the ancestor of this group infested the terrestrial ancestor of pinnipeds, which suggests these parasites coevolved with their hosts during the transition to marine environments. However, there has been no previous study investigating the phylogenetic relationships among sucking lice parasitizing seals and sea lions. To uncover the evolutionary history of these parasites, we obtained genomic data for Antarctophthirus microchir Trouessart and Neumann (from two hosts), Antarctophthirus carlinii Leonardi et al., Antarctophthirus lobodontis Enderlein, Antarctophthirus ogmorhini Enderlein, Lepidophthirus macrorhini Enderlein, and Proechinophthirus fluctus Ferris. From genomic sequence reads, we assembled > 1000 nuclear genes and used these data to infer a phylogenetic tree for these lice. We also used the assembled genes in combination with read‐mapping to estimate heterozygosity and effective population size from individual lice. Our analysis supports the monophyly of lice from pinnipeds and uncovers phylogenetic relationships within the group. Surprisingly, we found that A. carlinii, A. lobodontis, and A. ogmorhini have very little genetic divergence among them, whereas the divergence between different geographic representatives of A. microchir indicate that they are possibly different species. Nevertheless, our phylogeny of Echinophthiriidae suggests that these lice have consistently codiverged with their hosts with minimal host switching. Population genomic metrics indicate that louse effective population size is linked to host demographics, which further highlights the close association between pinnipeds and their lice.  相似文献   

15.
A new species, Galearis huanglongensis Q.W.Meng & Y.B.Luo, is described and illustrated. It is similar to Galearis cyclochila (Franch. & Sav.) Soó and Galearis diantha (Schltr.) P.F.Hunt, but differs in having a short spur, two elliptical lateral stigma lobes and distinctly separated bursicles. This new species is known only from the type locality, the Huanglong Valley, Songpan County, western Sichuan, China, growing amongst mosses under alpine shrubs at an elevation of about 3000 m. Based on two years of observations of its population size, the species was categorized as critically endangered CR (B1a, B2a) according to the World Conservation Union (IUCN) Red List Categories and Criteria, Version 3.1. The micromorphology of pollinia and seeds was observed by scanning electron microscopy and compared with that of G. cyclochila and G. diantha. The results supported G. huanglongensis Q.W.Meng & Y.B.Luo as a new species. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 689–695.  相似文献   

16.
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.  相似文献   

17.
Coevolutionary processes that drive the patterns of host–parasite associations can be deduced through congruence analysis of their phylogenies. Feather lice and their avian hosts have previously been used as typical model systems for congruence analysis; however, such analyses are strongly biased toward nonpasserine hosts in the temperate zone. Further, in the Afrotropical region especially, cospeciation studies of lice and birds are entirely missing. This work supplements knowledge of host–parasite associations in lice using cospeciation analysis of feather lice (genus Myrsidea and the Brueelia complex) and their avian hosts in the tropical rainforests of Cameroon. Our analysis revealed a limited number of cospeciation events in both parasite groups. The parasite–host associations in both louse groups were predominantly shaped by host switching. Despite a general dissimilarity in phylogeny for the parasites and hosts, we found significant congruence in host–parasite distance matrices, mainly driven by associations between Brueelia lice and passerine species of the Waxbill (Estrildidae) family, and Myrsidea lice and their Bulbul (Pycnonotidae) host species. As such, our study supports the importance of complex biotic interactions in tropical environments.  相似文献   

18.
Genetic variation among populations of chewing lice (Geomydoecus actuosi) was examined in relation to chromosomal and electrophoretic variation among populations of their hosts (Thomomys bottae) at a contact zone. Louse demes were characterized by low levels of genetic heterozygosity (H? = 0.039) that may result from founder effects during primary infestation of hosts, compounded by seasonal reductions in louse population size. Louse populations sampled from different hosts showed high levels of genetic structuring both within and among host localities. Microgeographic differentiation of louse populations is high (mean FST = 0.092) suggesting that properties of this host–parasite system promote differentiation of louse populations living on different individual hosts. Among-population differentiation in lice (FST = 0.240) was similar to that measured among host populations (FST = 0.236), suggesting a close association between gene flow in pocket gophers and gene flow in their lice.  相似文献   

19.
应用系统聚类分析方法对云南省境内24种主要小型哺乳动物(小兽)体表吸虱昆虫群落相似性及群落分类进行了研究。研究中将每一种小兽体表的所有吸虱昆虫定义为一个相应的吸虱群落单位。结果表明,小兽体表吸虱群落结构简单,物种多样性很低。多数小兽有固定的吸虱种类寄生,其吸虱的宿主特异性高。在动物分类上隶属同一个属的小兽,其体表吸虱群落相似程度高,在系统聚类分析中大多被归为一类。在动物分类上近缘的小兽,其体表吸虱群落相似,优势虱种相同或相似,此情形尤其表现在鼠属、白腹鼠属、姬鼠属和绒鼠属。吸虱群落相似性大小与相应小兽宿主在动物分类地位上的近缘性高低呈现高度一致。从生态学角度来看,吸虱昆虫与其所寄生的小兽宿主动物之间存在密切的协同进化关系。  相似文献   

20.
Many species of pocket gophers and their ectoparasitic chewing lice have broadly congruent phylogenies, indicating a history of frequent codivergence. For a variety of reasons, phylogenies of codiverging hosts and parasites are expected to be less congruent for more recently diverged taxa. This study is the first of its scale in the pocket gopher and chewing louse system, with its focus entirely on comparisons among populations within a single species of host and 3 chewing louse species in the Geomydoecus bulleri species complex. We examined mitochondrial DNA from a total of 46 specimens of Geomydoecus lice collected from 11 populations of the pocket gopher host, Pappogeomys bulleri. We also examined nuclear DNA from a subset of these chewing lice. Louse phylogenies were compared with a published pocket gopher phylogeny. Contrary to expectations, we observed a statistically significant degree of parallel cladogenesis in these closely related hosts and their parasites. We also observed a higher rate of evolution in chewing louse lineages than in their corresponding pocket gopher hosts. In addition, we found that 1 louse species (Geomydoecus burti) may not be a valid species, that subspecies within G. bulleri are not reciprocally monophyletic, and that morphological and genetic evidence support recognition of a new species of louse, Geomydoecus pricei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号