首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Injection of somatostatin‐14 (SS‐14) at 5 ng g?1 body mass (BM) into rainbow trout Oncorhynchus mykiss decreased (P < 0·05, cubic, r2 = 0·54) levels of growth hormone (GH) (1·5 ± 0·9 ng ml?1v. 6·6 ± 0·6 ng ml?1) over time when compared to controls. Somatostatin‐14 at 50 ng g?1 BM also decreased (P = 0·064, quadratic; r2 = 0·30) levels of GH (3·6 ± 2·1 ng ml?1v. 6·6 ± 0·6 ng ml?1) over time compared to controls. In a second study, passive immunization against SS‐14 (1 : 25 dose) increased (P = 0·10, cubic, r2 = 0·12) levels of GH (11·0 ± 4·8 ng ml?1v. 5·2 ± 1·4 ng ml?1) over time. Passively immunizing against SS‐14 (1 : 50 dose) increased (P < 0·05, cubic, r2 = 0·10) levels of GH (8·2 ± 2·3 ng ml?1v. 5·2 ± 1·4 ng ml?1) over time compared to controls. Overall, in the active immunization study there was no difference (P > 0·10) in specific growth rate (G) or feed conversion ratio (FCR) between the three treatment groups during the 9 weeks of the study. Only four of the fish immunized against SS‐14, however, developed antibody titres against SS. Compared to controls, these fish exhibited a G of 0·89 ± 0·09 v. 0·56 ± 0·09% per 3 weeks and FCR of 0·80 ± 0·04 v. 1·20 ± 0·05 g g?1. In SS‐14 immunized fish, levels of GH decreased (P < 0·05) by day 63 while levels of insulin like growth factor‐I (IGF‐I) increased (P < 0·05) by day 42 and 63. These results indicate the hypothalamic hormone SS‐14 regulates GH secretion similarly in rainbow trout as it does in mammals. Active immunization against SS‐14 could improve growth performance in rainbow trout but enhanced G and FCR is dependent upon generation of antibody titres.  相似文献   

2.
In roach Rutilus rutilus growth ceases below a temperature threshold of 12° C. This cessation of growth is accompanied by a reduction in feeding. Do roach decrease feeding in the cold because of reduced energy demand, caused by the decelerating effect of low temperature on metabolism and growth, or is feeding directly limited by low temperatures, leading to reduced growth rates? It was found that at low temperatures the intake and digestion of food may be limited by reduced activities of digestive enzymes. Trypsin, amylase and γ‐glutamyl transferase showed a negative compensation with respect to temperature, resulting in very low activities at acclimation temperatures of ≤12° C. Trypsin activity, falling from 400·5 ± 131·2 U g?1 fresh mass of the gut at 27° C to 12·5 U g?1 fresh mass at 4° C, displayed the strongest linear correlation with growth rates, suggesting that trypsin activities may set a limit to growth in the low temperature range. If protein digestion is limiting at low temperatures, this should be reflected in reduced concentrations of amino acid in the white muscle. The size of the total amino acid pool was not affected by temperature acclimation and ranged between 19·2 ± 6·2 and 25·2 ± 3·6 µmol g?1 fresh mass of the white muscle. A decrease, however, was found of several amino acids, mainly of threonine and glutamine, in the low temperature range. Low concentrations of the essential amino acid threonine (0·14 ± 0·03 µmol g?1 fresh mass at 12° C and 0·12 ± 0·05 µmol g?1 fresh mass at 4° C) were probably due to nutritional or digestional limitations and may therefore have resulted from reduced trypsin activity in the cold. The non‐essential amino acid glutamine, however, can be endogenously synthesized and its low level observed at 4° C (0·16 ± 0·09 µmol g?1 fresh mass) was not necessarily a result of low trypsin activities. It is more likely that low temperatures impair glutamine synthesis. The possibility that glutamine concentrations may be down regulated under conditions when anabolic processes are not advantageous is discussed.  相似文献   

3.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

4.
Aims:  Zero‐valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Methods:  A field‐scale system was utilized to evaluate the effectiveness of a biosand filter (S), a biosand filter with ZVI incorporated (ZVI) and a control (C, no treatment) in decontaminating irrigation water. An inoculum of c. 8·5 log CFU 100 ml?1 of Escherichia coli O157:H12 was introduced to all three column treatments in 20‐l doses. Filtered waters were subsequently overhead irrigated to ‘Tyee’ spinach plants. Water, spinach plant and soil samples were obtained on days 0, 1, 4, 6, 8, 10, 13 and 15 and analysed for E. coli O157:H12 populations. Results:  ZVI filters inactivated c. 6 log CFU 100 ml?1E. coli O157:H12 during filtration on day 0, significantly (P < 0·05) more than S filter (0·49 CFU 100 ml?1) when compared to control on day 0 (8·3 log CFU 100 ml?1). On day 0, spinach plants irrigated with ZVI‐filtered water had significantly lower E. coli O157 counts (0·13 log CFU g?1) than spinach irrigated with either S‐filtered (4·37 log CFU g?1) or control (5·23 log CFU g?1) water. Soils irrigated with ZVI‐filtered water contained E. coli O157:H12 populations below the detection limit (2 log CFU g?1), while those irrigated with S‐filtered water (3·56 log CFU g?1) were significantly lower than those irrigated with control (4·64 log CFU g?1). Conclusions:  ZVI biosand filters were more effective in reducing E. coli O157:H12 populations in irrigation water than sand filters. Significance and Impact of the Study:  Zero‐valent ion treatment may be a cost‐effective mitigation step to help small farmers reduce risk of foodborne E. coli infections associated with contamination of leafy greens.  相似文献   

5.
Aims: To assess the impact of antibiotic therapy on severe osseous infections, animal models of chronic bacterial infections have been developed; however, these models suffer from many experimental limitations. The aim of this work was to develop a new model system in which high levels of bacteria are obtained within femoral bone marrow and bone tissue, and such infections are maintained for at least 14 days. Methods and Results: Experimental osteomyelitis was induced in 25 New Zealand white rabbits. A 109 CFU ml?1 suspension of methicillin‐resistant Staphylococcus aureus was injected into the knee after bone trepanation. On day 3, surgical debridement was performed to mimic a surgical procedure. Animals were euthanized 1, 2, 3, 9 and 14 days post‐inoculation to determine the bacterial counts in marrow and bone, and to evaluate the stability of the infection. Inoculated lesions also were assessed for changes in histological parameters on days 3 and 7 post‐inoculation. At days 1, 2, 3, 9 and 14 post‐inoculation, we observed 6·50 ± 0·64, 7·30 ± 0·49, 7·82 ± 0·19, 8·00 ± 1·48 and 8·99 ± 0·20 log10 CFU g?1 in bone marrow and 8·40 ± 0·68, 7·65 ± 0·27, 7·58 ± 0·30, 8·88 ± 0·52 and 8·28 ± 0·39 log10 CFU g?1 in bone tissue, respectively. No statistical differences in bacterial count were found between bone marrow and bone tissue at any time point. Conclusion: This new model of acute osteomyelitis was validated by histological and microbiological changes in the absence of sclerosing agents, and these changes remained stable for 14 days. Significance and Impact of the Study: These results describe a new experimental model of acute osteomyelitis and demonstrate its usefulness in assessing the activity of antibacterial agents in vivo soon after bone infection.  相似文献   

6.
Aims: To identify ascomycetous yeasts recovered from sound and damaged grapes by the presence of honeydew or sour rot. Methods and Results: In sound grapes, the mean yeast counts ranged from 3·20 ± 1·04 log CFU g?1 to 5·87 ± 0·64 log CFU g?1. In honeydew grapes, the mean counts ranged from 3·88 ± 0·80 log CFU g?1 to 6·64 ± 0·77 log CFU g?1. In sour rot grapes counts varied between 6·34 ± 1·03 and 7·68 ± 0·38 logCFU g?1. Hanseniaspora uvarum was the most frequent species from sound samples. In both types of damage, the most frequent species were Candida vanderwaltii, H. uvarum and Zygoascus hellenicus. The latter species was recovered in high frequency because of the utilization of the selective medium DBDM (Dekkera/Brettanomyces differential medium). The scarce isolation frequency of the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and Zygosaccharomyces bisporus (in honeydew affected grapes) could only be demonstrated by the use of the selective medium ZDM (Zygosaccharomyces differential medium). Conclusions: The isolation of several species only from damaged grapes indicates that damage constituted the main factor determining yeast diversity. The utilization of selective media is required for eliciting the recovery of potentially wine spoilage species. Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimated.  相似文献   

7.
This study was conducted to create a nutritional database on brown seaweeds and to popularize their consumption and utilization in Iran. The fatty acid contents, amino acids profiles, and certain mineral elements composition of some brown seaweeds, Padina pavonica (L.) Thivy, Dictyota dichotoma (Huds.) J. V. Lamour., and Colpomenia sinuosa (Mert. ex Roth) Derbés et Solier were determined. Total lipid content ranged from 1.46 ± 0.38 to 2.94 ± 0.94 g · 100 g?1dry weight (dwt), and the most abundant fatty acids were C16:0, C18:1, C20:4 ω6, and C20:5 ω3. The unsaturated fatty acids predominated in all species and had balanced sources of ω3 and ω6 acids. Highest total polyunsaturated fatty acid (PUFA) levels occurred in C. sinuosa. The protein content of D. dichotoma was 17.73 ± 0.29 g · 100 g?1dwt, significantly higher than the other seaweeds examined. Among amino acids essential to human nutrition, methionine (Met; in D. dichotoma and P. pavonica) and lysine (Lys; in C. sinuosa) were present in high concentrations. The crude fiber content varied by 9.5 ± 11.6 g · 100 g?1dwt in all species. Chemical analysis indicated that ash content was between 27.02 ± 0.6 and 39.28 ± 0.7 g · 100 g?1dwt, and that these seaweeds contained higher amounts of both macrominerals (7,308–9,160 mg · 100 g?1dwt; Na, K, Ca) and trace elements (263–1,594 mg · 100 g?1dwt; Fe, Ni, Mn, Cu, Co) than have been reported for edible land plants. C. sinuosa had the highest amount of Ca, Fe, and a considerable content of Na was measured in P. pavonica.  相似文献   

8.
The effects of CO2 enrichment on photosynthesis and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (rubisco) were studied in current year and 1‐year‐old needles of the same branch of field‐grown Pinus radiata D. Don trees. All measurements were made in the fourth year of growth in large, open‐top chambers continuously maintained at ambient (36 Pa) or elevated (65 Pa) CO2 partial pressures. Photosynthetic rates of the 1‐year‐old needles made at the growth CO2 partial pressure averaged 10·5 ± 0·5 μmol m?2 s?1 in the 36 Pa grown trees and 11·8 ± 0·4 μmol m?2 s?1 in the 65 Pa grown trees, and were not significantly different from each other. The photosynthetic capacity of 1‐year‐old needles was reduced by 25% from 23·0 ± 1·8 μmol m?2 s?1 in the 36 Pa CO2 grown trees to 17·3 ± 0·7 μmol m?2 s?1 in the 65 Pa grown trees. Growth in elevated CO2 also resulted in a 25% reduction in Vcmax (maximum carboxylation rate), a 23% reduction in Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) and a 30% reduction in Rubisco activity and content. Total non‐structural carbohydrates (TNC) as a fraction of total dry mass increased from 12·8 ± 0·4% in 1‐year‐old needles from the 36 Pa grown trees to 14·2 ± 0·7% in 1‐year‐old needles from the 65 Pa grown trees and leaf nitrogen content decreased from 1·30 ± 0·02 to 1·09 ± 0·10 g m?2. The current‐year needles were not of sufficient size for gas exchange measurements, but none of the biochemical parameters measured (Rubisco, leaf chlorophyll, TNC and N), were effected by growth in elevated CO2. These results demonstrate that photosynthetic acclimation, which was not found in the first 2 years of this experiment, can develop over time in field‐grown trees and may be regulated by source‐sink balance, sugar feedback mechanisms and nitrogen allocation.  相似文献   

9.
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l?1), malate (2 g l?1) and ethanol (10 ml l?1) (GM + EtOH); glutamate (7·15 g l?1) and ethanol (10 ml l?1); or malate (8·16 g l?1), glucose (10·6 g l?1) and NH4Cl (1·8 g l?1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]?1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)?1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.  相似文献   

10.
Spawning performance of pinfish Lagodon rhomboides without use of hormonal aids was monitored over an extended season. Nearly three million eggs were obtained from 75 spawns collected over a 90‐day consecutive period from a single population of four brood fish (1M:1F). A mean ± s.d. batch fecundity of 30·27 ± 22·64 eggs g?1 female was estimated with 98·0 ± 0·06% of the batch composed of floating eggs which were 1·04 ± 0·04 mm in diameter and 85·71 ± 27·59% fertile. Floating eggs successfully hatched 54·65 ± 29·13% of the time which yielded larvae that were 2·59 ± 0·24 mm in length. Fatty acids within floating eggs were largely represented by polyunsaturated fatty acids (45·30 ± 2·14% of total fatty acids) of which linoleic acid [(c18:2n‐6cis) 3·49 ± 1·69% trifluoroacetic acid (TFA)] and docosahexaenoic acid (DHA) [(c22:6n‐3) 28·47 ± 1·48% TFA] represented the majority of fatty acids for n‐6 and n‐3 polyunsaturated fatty acids, respectively. The strongest correlations between fatty acids and hatching success and larval survival to first feeding were observed for the DHA:EPA (eicosapentaenoic acid; c20:5n‐3) ratio and total n‐6 polyunsaturated fatty‐acids levels, respectively. These data demonstrate potential for producers to rely on natural spawns for extensive egg production and provide a baseline for future development of natural spawning protocols of captive L. rhomboides.  相似文献   

11.
The objective of this study was to determine the effect of freezing on the function in Atlantic salmon Salmo salar spermatozoa. The semen was frozen in Cortland's medium + 1.3M dimethyl sulphoxide + 0.3M glucose + 2% bovine serum albumin (final concentration) in a ratio of 1:3 (semen:cryoprotectant) as the treatment (T) and fresh semen as the control (F). Straws of 0·5 ml of sperm suspension were frozen in 4 cm of N2L. They were thawed in a thermoregulated bath (40° C). After thawing, the percentage of spermatozoa with fragmented DNA [transferase dUTP (deoxyuridine triphosphate) nick‐end labelling (TUNEL)], plasma membrane integrity (SYBR‐14/PI) and mitochondrial membrane potential (ΔΨMMit, JC‐1) were evaluated by flow cytometry and motility was evaluated by optical microscope under stroboscopic light. The fertilization rates of the control and treatment semen were tested at a sperm density of 1·5 × 107 spermatozoa oocyte?1, by observation of the first cleavages after 16 h incubation at 10° C. In the cryopreserved semen (T), the mean ± s.d . DNA fragmentation was 4·8 ± 2·5%; plasma membrane integrity 75·2 ± 6·3%; mitochondrial membrane potential 51·7 ± 3·6%; motility 58·5 ± 5·3%; curved line velocity (VCL) 61·2 ± 17·4 µm s?1; average‐path velocity (VAP) 50·1 ± 17·3 µm s?1; straight‐line velocity (VSL) 59·1 ± 18·4 µm s?1; fertilization rate 81·6 ± 1·9%. There were significant differences in the plasma membrane integrity, mitochondrial membrane potential, motility, fertilization rate, VCL, VAP and VSL compared with the controls (P < 0·05). Also the mitochondrial membrane potential correlated with motility, fertilization rate, VCL and VSL (r = 0·75; r = 0·59; r = 0·77 and r = 0·79, respectively; P < 0·05); and the fertilization rate correlated with VCL and VSL (r = 0·59 and r = 0·55, respectively).  相似文献   

12.
Aims: To develop probiotics for the control of vibriosis caused by Vibrio anguillarum and Vibrio ordalii in finfish. Methods and Results: Kocuria SM1, isolated from the digestive tract of rainbow trout, was administered orally to rainbow trout (Oncorhynchus mykiss) for 2 weeks at a dose equivalent to c. 108 cells per g of feed and then challenged intraperitoneally with V. anguillarum and V. ordalii. Use of SM1 led to a reduction in mortalities to 15–20% compared to 74–80% mortalities in the controls. SM1 stimulated both cellular and humoral immune responses in rainbow trout, by elevation of leucocytes (5·5 ± 0·8 × 106 ml?1 from 3·7 ± 0·8 × 106 ml?1), erythrocytes (1·2 ± 0·1 × 108 ml?1 from 0·8 ± 0·1 × 108 ml?1), protein (23 ± 4·4 mg ml?1 from 16 ± 1·3 mg ml?1), globulin (15·7 ± 0·2 mg ml?1 from 9·9 ± 0·1 mg ml?1) and albumin (7·3 ± 0·2 mg ml?1 from 6·1 ± 0·1 mg ml?1) levels, upregulation of respiratory burst (0·05 ± 0·01 from 0·02 ± 0·01), complement (56 ± 7·2 units ml?1 from 40 ± 8·0 units ml?1), lysozyme (920 ± 128·8 units ml?1 from 760 ± 115·3 units ml?1) and bacterial killing activities. Conclusions: Kocuria SM1 successfully controlled vibriosis in rainbow trout, and the mode of action reflected stimulation of the host innate immune system. Significance and Impact of the Study: Probiotics can contribute a significant role in fish disease control strategies, and their use may replace some of the inhibitory chemicals currently used in fish farms.  相似文献   

13.
The construction cost of fine roots was studied in 23 woody species and two grassland communities, growing under natural conditions in southern Spain. Calculation of the energy (glucose) required for their synthesis was based on the quantification of chemical components present in tissues. Despite considerable differences in the chemical composition of the three life forms studied (trees, shrubs and herbaceous), detected differences in construction cost were non‐significant (mean value: 1·64 ± 0·13 g glucose g?1). However, shrubs and herbaceous plants growing in more fertile habitats expended significantly less energy on root synthesis (1·58 ± 0·06 and 1·41 ± 0·05 g glucose g?1, respectively) than those growing in less fertile areas (1·80 ± 0·06 and 1·57 ± 0·1 g glucose g?1, respectively), because they contained smaller amounts of either waxes (shrubs) or lignins (herbaceous), both expensive to synthesize, and, proportionately, more cellulose; which is inexpensive to synthesize. Deciduous and evergreen tree species also differed mainly with regard to wax and cellulose contents, giving rise to a significantly higher construction cost in evergreens (1·57 ± 0·07 g glucose g?1 versus 1·78 ± 0·02 g glucose g?1). The differences observed in construction cost appeared to be due more to habitat‐induced differences in chemical composition than to any intrinsic difference between the species studied.  相似文献   

14.
The stress response of Oncorhynchus mykiss in high‐altitude farms in central Mexico was investigated over two seasons: the cool (9·1–13·7° C) dry winter season, and the warmer (14·7–15·9° C), wetter summer season. Fish were subjected to an acute stress test followed by sampling of six physiological variables: blood cortisol, glucose, lactate, total antioxidant capacity, haemoglobin concentration and per cent packed cell volume (VPC%). Multivariate analyses revealed that lactate and total antioxidant capacity were significantly higher in the summer, when water temperatures were warmer and moderate hypoxia (4·9–5·3 mg l?1) prevailed. In contrast, plasma cortisol was significantly higher in the winter (mean ± s.e .: 76·7 ± 4·0 ng ml?1) when temperatures were cooler and dissolved oxygen levels higher (6·05–7·9 mg l?1), than in the summer (22·7 ± 3·8 ng ml?1). Haemoglobin concentrations (mg dl?1) were not significantly different between seasons, but VPC% was significantly higher in the summer (50%) than in the winter (35%). These results suggest that in summer, effects of high altitude on farmed fish are exacerbated by stresses of high temperatures and hypoxia, resulting in higher blood lactate, increased total antioxidant capacity and elevated VPC% levels.  相似文献   

15.
At 7 days after first feeding (DAFF), the peptide hormone cholecystokinin (CCK) content (fmol individual?1) and the tryptic activity [μmol arginine‐methyl‐coumarinyl‐7‐amide (MCA) min?1 individual?1] per individual gut of Atlantic halibut Hippoglossus hippoglossus larvae were low: 0·2 ± 0·1 and 0·14 ± 0·10, respectively. Thereafter, both parameters increased with the increase in gut mass and reached 19·67 ± 5·58 and 2·71 ± 0·64 at 26 DAFF, respectively. Due to the small sample size, the dry mass (MG, mg) of the individual gut could not be determined accurately at 7 DAFF. At 13 DAFF MG represented 5·5% of whole body dry mass (Mw, mg) while at 26 DAFF it had increased to 23%. The mass specific tryptic activity [μmol MCA min?1 per mg dry mass (M)] in the gut increased from 2·74 ± 1 ± 98 at 13 DAFF to 5·00 ± 0·78 at 26 DAFF. There was more individual variation in the mass specific CCK content (fmol M?1) but no significant differences were found, although the data indicated an increase (from 23·38 ± 11·26 at 13 DAFF to 36·27 ± 8·96 fmol M?1 at 26 DAFF). At 7 DAFF the CCK content of the gut represented c. 2% of the whole body CCK content while it increased to c. 62% of the whole body CCK content at 26 DAFF. This demonstrates that it is necessary to separate neural and gastrointestinal sources of CCK in order to determine its alimentary role in fish larvae. Trypsin activity was only found in the gut compartment. In larvae aged 45 DAFF dietary proteins delivery into the gut by tube‐feeding appeared to stimulate post‐prandial secretion of CCK from the gut as well as stimulate pancreatic trypsin secretion, suggesting that both factors contribute to protein digestion.  相似文献   

16.
The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil‐vegetation‐atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that relative leaf nitrogen concentration declines with relative irradiance from the top of a canopy to the bottom, in 1 : 1 proportion. In combination with a light transmission model it enables a simple estimate of the vertical profile in leaf nitrogen concentration (which is assumed to determine maximum carboxylation capacity), and in combination with estimates of the fraction of absorbed radiation it also leads to simple ‘big‐leaf’ analytical solutions for canopy photosynthesis. We tested how forests deviate from this condition in five tree canopies, including four broadleaf stands, and one needle‐leaf stand: a mixed‐species tropical rain forest, oak (Quercus petraea (Matt.) Liebl), birch (Betula pendula Roth), beech (Fagus sylvatica L.) and Sitka spruce (Picea sitchensis (Bong.) Carr). Each canopy was studied when fully developed (mid‐to‐late summer for temperate stands). Irradiance (Q, µmol m?2 s?1) was measured for 20 d using quantum sensors placed throughout the vertical canopy profile. Measurements were made to obtain parameters from leaves adjacent to the radiation sensors: maximum carboxylation and electron transfer capacity (Va, Ja, µmol m?2 s?1), day respiration (Rda, µmol m?2 s?1), leaf nitrogen concentration (Nm, mg g?1) and leaf mass per unit area (La, g m?2). Relative to upper‐canopy values, Va declined linearly in 1 : 1 proportion with Na. Relative Va also declined linearly with relative Q, but with a significant intercept at zero irradiance (P < 0·01). This intercept was strongly related to La of the lowest leaves in each canopy (P < 0·01, r2 = 0·98, n= 5). For each canopy, daily lnQ was also linearly related with lnVa(P < 0·05), and the intercept was correlated with the value for photosynthetic capacity per unit nitrogen (PUN: Va/Na, µmol g?1 s?1) of the lowest leaves in each canopy (P < 0·05). Va was linearly related with La and Na(P < 0·01), but the slope of the Va : Na relationship varied widely among sites. Hence, whilst there was a unique Va : Na ratio in each stand, acclimation in Va to Q varied predictably with La of the lowest leaves in each canopy. The specific leaf area, Lm(cm2 g?1), of the canopy‐bottom foliage was also found to predict carboxylation capacity (expressed on a mass basis; Vm, µmol g?1 s?1) at all sites (P < 0·01). These results invalidate the hypothesis of full acclimation to irradiance, but suggest that La and Lm of the most light‐limited leaves in a canopy are widely applicable indicators of the distribution of photosynthetic capacity with height in forests.  相似文献   

17.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   

18.
Aims: Chromium (III) is an insulinomimetic agent whose biological and/or environmental availability is frequently in the form of Cr(VI), which is known to be toxic. Wall‐less mutant of Neurospora crassa (FGSC stock no. 4761) is known to possess insulin receptor in its cell membrane and hence is a good model for Cr toxicity studies. This study explores the toxicity of Cr(VI) and the possible consequences on simultaneous exposure to insulin in N. crassa. Methods and Results: Comet assay of N. crassa cells treated with 100 μmol l?1 Cr(VI) showed up to 50% reduction in comet tail lengths when incubated simultaneously with 0·4 U insulin. Fluorescence measurement in Cr(VI)‐treated cells using DCFH‐DA showed six‐ to eightfold increase in free radical generation, which was reduced to fourfold by 0·4 U insulin. Annexin‐V/PI Flow cytometry analysis indicated necrotic cell death up to 28·7 ± 3·6% and 68·6 ± 2·5% on Cr(VI) exposure at concentrations 100 and 500 μmol l?1 which was reduced by 68·3 ± 3·2% and 48·9 ± 3·6%, respectively, upon addition of insulin. Conclusion: Insulin‐mediated protection from DNA damage by Cr(VI) is because of scavenging of free radicals liberated during exposure to Cr(VI). Significance and Impact of the Study: Overall, Cr(VI) toxicity depends upon available insulin, indicating that Cr(VI) toxicity may be a serious issue in insulin‐deficient individuals with diabetes.  相似文献   

19.
The life history of the long‐snouted seahorse Hippocampus guttulatus was characterized using mark‐recapture data collected within a focal study site and catch data from 53 additional sites in the Ria Formosa coastal lagoon, southern Portugal. Population structure in benthic habitats was characterized by high local densities (0·3–1·5 m?2), equal sex ratios and few juveniles <70 mm. Adult H. guttulatus maintained small (19·9 ± 12·4 m2), strongly overlapping home ranges during multiple reproductive seasons. Recruited (benthic) juveniles exhibited significantly lower site fidelity than adults. A Ford‐Walford plot of standard length (LS) at time t against LS measured during the previous year from tagged juveniles and adults led to estimates of the von Bertalanffy parameters K = 0·571 and L = 197·6 mm. The growth rate of planktonic juveniles (inferred from previous studies), was greater than predicted by the von Bertalanffy model, providing evidence of an ontogenetic shift in growth trajectory. The instantaneous rate of natural mortality, M, ranged from 1·13 to 1·22 year?1(annual survival rate = 29·4–32·2%). Sexes did not differ in movement, growth or survival patterns. On average, H. guttulatus measured 12·2 ± 0·8 mm at birth. Planktonic juveniles recruited to vegetated habitat at 96·0 ± 8·0 mm (0·25 years), had mature brood pouches (males only) at 109·4 mm (0·49 years), began maintaining home ranges and reproducing at 125–129 mm (0·85–0·94 years), and lived for 4·3–5·5 years. Early age at maturity, rapid growth rates, and short generation times suggested that H. guttulatus may recover rapidly when direct (e.g. exploitation) and indirect (e.g. by‐catch and habitat damage) effects of disturbance cease, but may be vulnerable to extended periods of poor recruitment.  相似文献   

20.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号