首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Teachers conceptualise inquiry learning in science learning differently. This is particularly evident when teachers are introduced to inquiry pedagogy within a new context. This exploratory study draws on semi-structured interviews conducted with eight pre-service secondary biology teachers following a day visit with university tutors to the Royal Botanical Gardens, Kew. Emerging findings were: first, pre-service biology teachers’ views of inquiry learning range in sophistication from simple notions of ‘learning from doing’ to complex multi-notions such as student generated questions, developing curiosity and encouraging authentic scientific practices. Second, similarly their views of inquiry learning opportunities in botanical gardens ranged from simply places that offered ‘memorable experiences’ to enabling autonomous learning due to the organism diversity and multiple climates. Pre-service teachers categorised as having unsophisticated views of inquiry learning had limited expectations of botanical gardens as productive learning environments. Third, the majority of pre-service teachers were concerned about managing inquiry learning. A tension was identified between how open-ended an inquiry activity could be whilst ensuring student focus. Further, participants were concerned about the practical management of inquiry learning. We discuss implications for teacher educators and botanical garden educators and the requirement for curriculum development and promotion.  相似文献   

2.
Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students’ lives. This article details how we use a sequence of faded scaffolded inquiry supported by technologies to engage students meaningfully in science connected to their lives and schoolyards. In this approach, more teacher guidance is provided earlier in the inquiry experiences before this is faded later in the sequence, as students are better prepared to complete successful inquiries. The sequence of inquiry experiences shared in this article offers one possible mechanism for science teaching supported by technologies as an exemplar for translating teaching “science as inquiry” into practice.  相似文献   

3.
Annual Review     
In recent years, the science teaching community and curriculum developers have emphasised the importance of teaching inquiry and teaching science as inquiry. One way of developing learners' skills for planning and carrying out scientific research is by allowing them to perform independent research, guided by a teacher. It was recently discovered that there are considerable differences between experiments conducted by scientists and those conducted by students, with regard to the cognitive processes that the experimenters go through. Developing inquiry study activities that emphasise authentic inquiry was suggested in order to introduce students to cognitive activity that more closely resembles that of scientific professionals. This article describes the Biomind programme, intended for students of Grades 11 and 12 (ages 16 to 18 years) majoring in biology. The curriculum, developed by biology teachers, enables students to conduct independent research under teacher guidance. The curriculum emphasises the learning process, not just the outcome, and so students must reflect upon the work in progress. Moreover, the Biomind curriculum follows the principles of authentic inquiry. Biomind may improve students' scientific thinking abilities, expand the guidance aspect of teachers' work, and inspire curriculum developers to further emphasise inquiry.  相似文献   

4.
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense of the world around them. One such partnership is called the student–teacher–scientist partnership, in which teachers and their students participate in and contribute to the research of scientists. This article explores a partnership between a 10th-grade biology teacher, her students, and practicing scientists who collaborated in the design, implementation and evaluation of a horse evolution unit. The primary goal of the collaborative activity was to involve teachers and students in a process of conceptual change as a means of eliminating common misconceptions implicit in horse evolution displays in museums in various parts of the country. The evidence-based lessons developed enhanced students’ understanding of concepts in macroevolution but also connected the science classroom with a community of scientists whose personalization of the horse evolution unit situated biological concepts and the learning experience within the context of real-world issues.  相似文献   

5.
Gaming, an integral part of many students’ lives outside school, can provide an engaging platform for focusing students on important disciplinary core concepts as an entry into developing students’ understanding of these concepts through science practices. This article highlights how S’cape can be used to support student learning aligned with the most recent standards documents. Through combining students’ initial engagement in a motivating gaming experience with a two-experiment scaffolded inquiry sequence enhanced with information literacy-targeted homework, this article reveals how support can be offered for asking questions, planning and carrying out investigations, analyzing and interpreting data, constructing explanations, and engaging in argument from evidence to refine understandings of core concepts. We believe that as science teachers strive to explore important concepts with students through allowing them to actually practice science, games such as S’cape strategically leveraged and sequenced with scaffolded inquiry experiences can support these efforts.  相似文献   

6.
Research into how and what families learn in science museums and other informal science learning settings suggests that parent-child interactions play an important role in shaping children’s learning experiences. Our exploratory case study set out to discover and analyse learning happening within family groups during a visit to a traditional museum natural history gallery. Research methods were influenced by a growing body of literature that looks for learning in family visitor talk. Conversations of 18 families were recorded as they explored a gallery after being introduced to six learning games which fostered a ‘climate of inquiry’ and which were designed to spark family dialogue. Our findings indicate that families adopt a range of interactional approaches for building meaning together in a museum gallery. These approaches fell along a spectrum that varied according to the level of co-investigation and co-operation between group members. We suggest that family learning could be supported in informal learning contexts through simple, low-cost learning strategies that encourage dialogue and co-investigatory behaviours.  相似文献   

7.
In this article, I provide an analysis of my work (1985–present) with non-major biology students and science teacher candidates in developing strategies for teaching and enhancing learning with respect to evolutionary science. This first-person account describes changes in evolution instruction over the course of a career based on personal experiences, research-informed practices, and a critical collaboration with colleague Mike U. Smith. I assert four insights concerning the influence and efficacy of teaching nature of science (NOS) prior to the introduction of evolution within college courses for science non-majors and science teacher candidates. These insights are: (a) teach explicit NOS principles first; (b) integrate evolution as a theme throughout a course in introductory biology (but after NOS principles have been introduced); (c) use active learning pedagogies; and (d) use non-threatening alternative assessments to enhance student learning and acceptance of evolutionary science. Together, these insights establish a pedagogy that I (and my colleagues) have found to be efficacious for supporting novice students as they engage in the study of evolutionary science.  相似文献   

8.
Using an exploration–explanation sequence of science instruction helps teachers unveil students’ prior knowledge about circuits and engage them in minds-on science learning. In these lessons, fourth grade students make predictions and test their ideas about circuits in series through hands-on investigations. The teacher helps students make connections between their hands-on experiences collecting data and new terms. This lesson shows how teachers can incorporate formative assessments such as checkpoints, self tests, and exit slips into the explanation phase of instruction so students can evaluate and self-monitor their understanding of circuits in series. These activities meet the National Science Education Standards for active, student-center learning environments that cultivate the critical thinking skills necessary to learn science.  相似文献   

9.
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.  相似文献   

10.
“微生物学”课程是酿酒工程、生物工程、生物技术等专业的必修课程,也是一门重要的专业核心课程。基于培养具有科学探究能力的创新型人才的教学目标,我们教学团队深入改革“微生物学”课程,建设一流本科课程。通过贯彻“以学生为中心”和“科研反哺教学”的教学理念,深入挖掘课程育人价值,开展课程思政建设工作,建设慕课(massive open online course, MOOC)平台“微生物学”课程线上教学全套资源,构建“夯实基础-解构问题分析训练-研讨课”的教学模式,改进学生学习模式,改革学习过程评价体系,以及指导学生参加科创竞赛等教学改革实践,全面提高学生的科学探究能力,为社会储备具有科学探究能力的创新型人才,为工科院校建设一流课程提供借鉴。  相似文献   

11.
English learners (ELs) benefit from inquiry-based science instruction that includes explicit attention to language learning goals. The purpose of this article is to share a third-grade unit on forces and motion which integrates science inquiry and writing in science notebooks with the goal of developing ELs' engagement in science, conceptual understanding, and academic language and literacy skills. We demonstrate how to engage diverse students' background knowledge and use classroom activities and discussion to create bridges between everyday and academic language. We utilize excerpts from Peter, Lucia, and Andrea's science notebooks to explore and highlight how teachers can use this resource as a means of communicating science, during instruction. Through these EL students' journals, we discuss the importance of developing language goals at the word, sentence, and discourse level while promoting and supporting ELs' use of the language of science.  相似文献   

12.
Hubert C. Soltan 《CMAJ》1967,96(13):965-971
Suggestions for improvement of the educational program in the first two years of the medical curriculum are made in the light of simultaneous experiences as teacher and student. The learning needs of the student should be given more consideration. Many of the present learning-teaching problems could be solved by closer communication and collaboration between instructors teaching the same students coupled to an official recognition of the value of good teaching. In spite of a multiplicity of courses and basic science departments, the student is a single person with a rather limited goal. He is required to learn and remember a vast amount of detailed factual information during his first two years of the medical curriculum. The medical student should be reinstated as an integral human component of the structure and functioning of each department. This is a difficult task because the dual functions of research in a specialized discipline and undergraduate medical teaching frequently pull an individual''s or department''s activities in opposite directions and lead to administrative problems.  相似文献   

13.
One dilemma science teachers face every day is balancing the content demands of state and federal testing requirements while providing opportunities for inquiry. Using the 5E learning cycle is a realistic, constructivist way to address this dilemma. The 5E learning cycle leads students through a sequence of learning in which they become engaged in a topic, explore that topic, are given an explanation for their experiences, elaborate on their learning, and are evaluated. This article outlines a 5E learning cycle introducing middle/high school students to the cell.  相似文献   

14.
Vocabulary is the essential element of comprehending concepts in content areas. Many words used in science content-area materials are used to define concepts and to increase the conceptual development of the content area. Conceptual development is a major goal of content-area instruction. Without a clear understanding of the language of the science content, students will certainly experience difficulty and a lack of interest with their science content-area material. Providing students with inquiry strategic vocabulary strategies can significantly support their understanding and interest concerning the language of science. As a result of using engaged vocabulary strategies, teachers can help students bridge the gap between the language of the science content and the language and background knowledge that students bring to the class. This article is easily adaptable for grades 6-12, and it is applicable to all science areas. It provides the middle and high school science teacher with five engaged learning vocabulary strategies that will help students become active participants in the learning process as they master their content area material. In addition, the article offers a pre- and postevaluation Science Vocabulary Questionnaire.  相似文献   

15.
State and national standards call for teaching evolution concepts as early as kindergarten, which provides motivation to continue developing science instruction and curriculum for young learners. The importance of addressing students’ folk theories regarding science justifies teaching evolution early in K-12 education. In this project, we developed, implemented, and researched standards-based lessons to teach elements of evolution (speciation and adaption) to kindergarteners and second graders. Our lessons attended to the students’ prior knowledge, and utilized inquiry and modeling to teach and assess their ability to recognize patterns of similarity and differences among organisms. Using their products and comments as evidence, it was apparent the students were able to communicate recognition of patterns and effectively apply their knowledge in near transfer activities, indicating they achieved our learning objectives. This provides support for teaching evolution concepts in the early grades and evidence of the ability for young children to effectively engage in supported inquiry and modeling for learning science.  相似文献   

16.
This article traces a systematic, respectful process for using narrative materials as vehicles for teachers' professional development. Ann, a high school history teacher, wrote a series of stories about school experiences, using them as departure points for discussing, thinking, and writing about her ongoing practice in collaboration with the author. The article outlines in detail the methods of narrative inquiry the author employed to safeguard Ann's voice and perspective while supporting her in critical reflection and changed practices  相似文献   

17.
As a fundamental strategy for all science curriculum, inquiry is of prime importance. In order to facilitate inquiry during science education in middle school, 5E learning model was applied in this study. Following 5E learning model during a lesson, students can engage in a topic after being served to mitigate cognitive disequilibrium or familiar with daily-life examples such as yoghurt fermentation, oven spring, etc. explore the topic making an observation or testing hypothesis, explain and relate their experiences scientifically, extend or elaborate their knowledge and then being evaluated. This study introduces a sample 5E learning model for middle school students at the ages of 10–12 in science laboratory with an augmented reality microscope MicrosAR to examine microscopic organisms based on inquiry-based learning.  相似文献   

18.
The essence of learning is change; learning is the process by which learners customize new information to make it personally meaningful and relevant. Training is the process of helping students make those changes. Research indicates that adults learn differently than children or adolescents and that adults consistently use the following six learning strategies: prior experiences; conversations; metacognition; reflection; authentic experiences; and images, pictures, or other types of visuals. Each of these learning strategies can be combined with the other strategies and often build upon each other. A recent study on how health care professionals learn indicated that the learning strategy they used most often was reflection, which supports learning before, during, and after training. Numerous examples are provided in this article describing how to integrate each of the six adult learning strategies into laboratory animal science training. While lectures and other types of direct instruction are appropriate, they are inadequate and ineffective unless they are integrated with and support adult learning strategies. Both the US Department of Agriculture regulations and the Public Health Service Policy mandate that research institutions must ensure that all personnel involved in animal care, treatment, or use are qualified to perform their duties. Applying adult learning strategies to training for the laboratory animal science community will enhance learning and improve both the science and the humane care of the animals, which is a goal our community must continuously strive to achieve.  相似文献   

19.
高校课程教学基于专业定位,是建立课程教学体系与提高教学效果的先决条件。高等林业院校对非生物类专业开设的野生动物学课程,需要根据专业培养目标与学生特点确定教学内容、方法与评价体系。在对旅游管理专业开设的野生动物学教学改革中,基于专业培养目标,通过对教学内容调整,开展趣味教学、研究性学习、案例讨论等教学方法的探索,总结了教学经验与教训,提出从学校、学院和教师3个层面共同努力以促进野生动物学教学改革的建议。  相似文献   

20.
In this activity, teachers in one state create and share an “exchange box” of environmental and cultural items with students of another state. The Environmental Exchange Box activity enables teachers to improve students' skills in scientific inquiry and develop attitudes and values conducive to science learning such as wonder, curiosity, and respect for different social perceptions. Teachers will be able to work beyond the limits of the classroom and introduce outside resources to help increase students' global awareness and promote respect for the culture and environment of diverse populations. Specifically, this activity can help teachers fulfill national Teaching Standards B, D, and E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号