首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 6‐month long study was conducted to improve the nutritional quality of the cultured sobaity bream, Sparidentex hasta by feeding them finisher feeds containing high docosahexaenoic acid (DHA) at the last two months of the grow‐out stage so that the muscle DHA level be increased at par to the wild. A grow‐out feed used from the beginning until the end of the trial was considered as the control (Diet 1). Experimental diets 2 and 3 were formulated to contain 9.0% DHA (e.g. 1.68 g DHA/100 g feed) and 10.5% DHA (2.20 g DHA/100 g feed), by incorporating high DHA tuna oil into a sea bream grow‐out diet. For comparison, a commercial finisher feed (Diet 4) from Skretting, Italy was also used. The results of this study demonstrated that fish fed DHA enriched finisher diets resulted in significantly (p < .05) better growth, feed utilization and higher muscle eicosapentaenoic acid (EPA) and DHA content compared to those fed grow‐out diet. The muscle DHA and EPA of fish fed finisher diets were also higher than those of the whole year average DHA and EPA content of wild sobaity. An organoleptic evaluation showed no significant (p > .05) differences between sensory attributes of muscle from cultured and wild sea bream. The results of the study demonstrated that feeding finisher feed enriched with DHA at the later part of the grow‐out operation, the n‐3 PUFA levels of cultured sobaity can cost‐effectively be increased at par to the wild.  相似文献   

2.
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 ) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.  相似文献   

3.
Nine thraustochytrid strains isolated from subtropical mangroves were screened for their eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production potential in a glucose yeast extract medium. Their ability to utilize okara (soymilk residue) for growth and EPA and DHA production was also evaluated. EPA yield was low in most strains, while DHA level was high on glucose yeast extract medium, producing 28.1–41.1% of total fatty acids, for all strains, with the exception of Ulkenia sp. KF13. The DHA yield of Schizochytrium mangrovei strains ranged from 747.7 to 2778.9 mg/l after 52 h of fermentation at 25°C. All strains utilized okara as a substrate for growth, but DHA yield was lower when compared with fermentation in a glucose yeast extract medium. Journal of Industrial Microbiology & Biotechnology (2001) 27, 199–202. Received 11 December 2000/ Accepted in revised form 29 June 2001  相似文献   

4.
Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.  相似文献   

5.
Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, ≥C20) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A–H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C20, C22, omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50–61% TFA after 7 days of growth in basal medium at 20 °C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20–30% TFA) and the sum of saturated FA was in the range of 32–51%. β,β-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils.  相似文献   

6.
A protective effect of the n-3 polyunsaturated fatty acids (PUFAs) in preventing ventricular fibrillation in experimental animals and cultured cardiomyocytes has been demonstrated in a number of studies. In this study, a possible role for the n-3 PUFAs in the treatment of atrial fibrillation (AF) was investigated at the cellular level using atrial myocytes isolated from young adult rats as the experimental model. Electrically-stimulated, synchronously-contracting myocytes were induced to contract asynchronously by the addition of 10 M isoproterenol. Asynchronous contractile activity was reduced following acute addition of the n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at 10 M, compared with no fatty acid addition (from 99.0 ±: 1.0% to 30.7 ± 5.2% (p < 0.05) for DHA and 23.8 ± 2.8% (p < 0.01) for EPA), while the saturated fatty acid, docosanoic acid (DA) and the methyl ester of DHA (DHA m.e.) did not exert a significant effect on asynchronous contractile activity. Asynchronous contractile activity was also reduced to 1.7 ± 1.7% in the presence of the membrane fluidising agent, benzyl alcohol (p < 0.001 vs no fatty acid addition). Cell membrane fluidity was determined by steady state fluorescence anisotropy using the fluorescent probe, TMAP-DPH. Addition of DHA, EPA or benzyl alcohol significantly increased sarcolemmal membrane fluidity (decreased anisotropy, rss) of atrial myocytes compared with no addition of fatty acid (control) (from rss = 0.203 ±0.004 to 0.159 ± 0.004 (p < 0.01) for DHA, 0.166 ± 0.001 (p < 0.01) for EPA and 0.186 ±0.003 (p < 0.05) for benzyl alcohol, while DA and DHA m.e. were without effect. It is concluded that the n-3 PUFAs exert anti-asynchronous effects in rat atrial myocytes by a mechanism which may involve changes in membrane fluidity.  相似文献   

7.
A diet rich in omega-3s has previously been suggested to prevent bone loss. However, evidence for this has been limited by short exposure to omega-3 fatty acids (FAs). We investigated whether a diet enriched in eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for the entire adult life of mice could improve bone microstructure and strength. Thirty female mice received a diet enriched in DHA or EPA or an isocaloric control diet from 3 to 17 months of age. Changes in bone microstructure were analyzed longitudinally and biomechanical properties were analysed by a three-point bending test. Bone remodelling was evaluated by markers of bone turnover and histomorphometry. Trabecular bone volume in caudal vertebrae was improved by EPA or DHA at 8 months (+26.6% and +17.2%, respectively, compared to +3.8% in controls, P=.01), but not thereafter. Trabecular bone loss in the tibia was not prevented by omega-3 FAs (BV/TV −94%, −93% and −97% in EPA, DHA and controls, respectively). EPA improved femur cortical bone volume (+8.1%, P<.05) and thickness (+4.4%, P<.05) compared to controls. EPA, but not DHA, reduced age-related decline of osteocalcin (−70% vs. −83% in controls, P<.05). EPA and DHA increased leptin levels (7.3±0.7 and 8.5±0.5 ng ml−1, respectively, compared to 4.5±0.9 ng ml−1 in controls, P=.001); however, only EPA further increased IGF-1 levels (739±108 ng ml−1, compared to 417±58 ng ml−1 in controls, P=.04). These data suggest that long-term intake of omega-3 FA, particularly EPA, may modestly improve the structural and mechanical properties of cortical bone by an increase in leptin and IGF-1 levels, without affecting trabecular bone loss.  相似文献   

8.
The pre-spawning condition of adult bivalves is influenced by quantity and quality of available food. For bivalves, the essential polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3) are presumed to determine the nutritional value of algae. Macoma balthica kept on a broodstock diet supplemented with PUFAs spawned a larger number of eggs (average 22220) per female and larger sized eggs (106.7 μm) compared to adults kept on a diet without PUFA supplementation (962.5 eggs with average size 99.8 μm).Larvae of M. balthica from the same parental pool however did not profit from a diet where a part was replaced with PUFA spheres. Instead, larvae reared on Isochrysis sp. showed lower mortality and higher growth rates than larvae fed on the same algae supplemented with lipid spheres. Crassostrea gigas larvae showed no clear response to a PUFA supplemented diet.  相似文献   

9.
Spawning performance of pinfish Lagodon rhomboides without use of hormonal aids was monitored over an extended season. Nearly three million eggs were obtained from 75 spawns collected over a 90‐day consecutive period from a single population of four brood fish (1M:1F). A mean ± s.d. batch fecundity of 30·27 ± 22·64 eggs g?1 female was estimated with 98·0 ± 0·06% of the batch composed of floating eggs which were 1·04 ± 0·04 mm in diameter and 85·71 ± 27·59% fertile. Floating eggs successfully hatched 54·65 ± 29·13% of the time which yielded larvae that were 2·59 ± 0·24 mm in length. Fatty acids within floating eggs were largely represented by polyunsaturated fatty acids (45·30 ± 2·14% of total fatty acids) of which linoleic acid [(c18:2n‐6cis) 3·49 ± 1·69% trifluoroacetic acid (TFA)] and docosahexaenoic acid (DHA) [(c22:6n‐3) 28·47 ± 1·48% TFA] represented the majority of fatty acids for n‐6 and n‐3 polyunsaturated fatty acids, respectively. The strongest correlations between fatty acids and hatching success and larval survival to first feeding were observed for the DHA:EPA (eicosapentaenoic acid; c20:5n‐3) ratio and total n‐6 polyunsaturated fatty‐acids levels, respectively. These data demonstrate potential for producers to rely on natural spawns for extensive egg production and provide a baseline for future development of natural spawning protocols of captive L. rhomboides.  相似文献   

10.
15-F?(t)-isoprostane (15-F?(t)-IsoP), an oxidation product of arachidonic acid (AA), affects vascular and platelet function; however, the bioactivity of other fatty acids oxidation products is unknown. This paper studied rat aortic vascular reactivity and human platelet aggregation in response to 14 oxidation products of AA, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and α-linolenic acid (ALA) compared with 15-F?(t)-IsoP. It also compared the F?(t)-IsoPs profile in human platelets. EPA-derived 15-F?(t)-IsoP constricted rat aorta less than 15-F?(t)-IsoP, but none of the other oxidation products affected vascular reactivity. Only 15-F?(t)-IsoP (10?? M) directly affected platelet aggregation. 15-F?(t)-IsoP, ent-16-F?-phytoprostane (from ALA) and isofurans A and B (from AA) inhibited reversible aggregation to U46619. Unlike plasma, the platelet profile of F?-IsoP showed that 8-F(2t)-IsoP were higher than 15-F?(t)-IsoP. Unlike 15-F?(t)-IsoP, the test compounds derived from fatty acids oxidation did not affect vascular or platelet function. Elevated platelet 8-F?(t)-IsoP could limit 15-F?(t)-IsoP-induced aggregation under conditions of oxidant stress.  相似文献   

11.
An isolation program targeting Thraustochytrids (marine fungoid protists) from 19 different Atlantic Canadian locations was performed. Sixty-eight isolates were screened for biomass, total fatty acid (TFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content. Analysis of fatty acid methyl ester results discerned four distinctive clusters based on fatty acid profiles, with biomass ranging from 0.1 to 2.3 g L−1, and lipid, EPA, and DHA contents ranging from 27.1 to 321.14, 2.97 to 21.25, and 5.18 to 83.63 mg g−1 biomass, respectively. ONC-T18, was subsequently chosen for further manipulations. Identified using 18S rRNA gene sequencing techniques as a Thraustochytrium sp., most closely related to Thraustochytrium striatum T91-6, ONC-T18 produced up to 28.0 g L−1 biomass, 81.7% TFA, 31.4% (w/w biomass) DHA, and 4.6 g L−1 DHA under optimal fermentation conditions. Furthermore, this strain was found to produce the carotenoids and xanthophylls astaxanthin, zeaxanthin, canthaxanthin, echinenone, and β-carotene. Given this strain’s impressive productivity when compared to commercial strains, such as Schizochytrium sp. SR21 (which has only 50% TFA), coupled with its ability to grow at economical nitrogen and very low salt concentrations (2 g L−1), ONC-T18 is seen as an ideal candidate for both scale-up and commercialization.  相似文献   

12.
Changes in fatty acid composition, cholesterol and fat‐soluble vitamins were studied during development (fertilized eggs, yolk‐sac larvae, and after yolk resorption of shabbout, Barbus grypus). Significant differences were found in the monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFA), PUFA/saturated fatty acids (SFA), ∑n‐3 and eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratios between eggs and larvae (P < 0.05). Significant differences were also observed in the C14:0, C16:1n‐7, C18:1n‐9, C18:3n‐6, C20:0, C20:4n‐6, C24:0, C24:1, C22:6n‐3 fatty acids between eggs and larvae after yolk‐sac resorption (P < 0.05). Vitamin α‐ Tocopherol and retinol content increased during embryogenesis, but changes were insignificant in retinol acetate, δ‐Tocopherol, K1, K2 and cholesterol content between eggs and larvae after yolk resorption (P > 0.05).  相似文献   

13.
Aim: To isolate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) genes from Shewanella baltica MAC1 and to examine recombinant production of EPA and DHA in E. coli to investigate cost‐effective, sustainable and convenient alternative sources for fish oils. Methods and Results: A fosmid library was prepared from the genomic DNA of S. baltica MAC1 and was screened for EPA and DHA genes by colony hybridization using a partial fragment of the S. baltica MAC1 pfaA and pfaD genes as probes. Analysis of total fatty acids isolated from transgenic E. coli positive for pfaA and pfaD genes by gas chromatography and gas chromatography‐mass spectrometry indicated recombinant production of both EPA and DHA. Analysis of the complete nucleotide sequence for the isolated gene cluster showed 16 putative open reading frames (ORFs). Among those, four ORFs showed homology with pfaA, pfaB, pfaC and pfaD genes of the EPA and/or DHA biosynthesis gene clusters; however, the protein domains of these genes were different from other EPA/DHA biosynthesis genes. Conclusions: The EPA and DHA gene cluster was cloned successfully. The transgenic E. coli strain carrying the omega‐3 gene cluster was able to produce both EPA and DHA. The isolated gene cluster contained all the genes required for the recombinant production of both EPA and DHA in E. coli. Significance and Impact of the Study: These findings have implications for any future use of the EPA and DHA gene cluster in other micro‐organisms, notably those being used for fermentation. Recombinant production of both EPA and DHA by E. coli or any other micro‐organism has great potential to add economic value to a variety of industrial and agricultural products.  相似文献   

14.
The anti-arrhythmic effects of long-chain polyunsaturated fatty acids (PUFAs) may be related to their ability to alter calcium handling in cardiac myocytes. We investigated the effect of eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) on calcium sparks in rat cardiac myocytes and the effects of these PUFAs and the monounsaturated oleic acid on cardiac calcium release channels (RyRs). Visualization of subcellular calcium concentrations in single rat ventricular myocytes showed that intensity of calcium sparks was reduced in the presence of EPA and DHA (15 µM). It was also found that calcium sparks decayed more quickly in the presence of EPA but not DHA. Sarcoplasmic vesicles containing RyRs were prepared from sheep hearts and RyR activity was determined by either [3H]ryanodine binding or by single-channel recording. Bilayers were formed from phosphatidylethanolamine and phosphatidylcholine dissolved in either n-decane or n-tetradecane. EPA inhibited [3H]ryanodine binding to RyRs in SR vesicles with K I = 40 µM. Poly- and mono-unsaturated free fatty acids inhibited RyR activity in lipid bilayers. EPA (cytosolic or luminal) inhibited RyRs with K I =32 µM and Hill coefficient, n 1 = 3.8. Inhibition was independent of the n-alkane solvent and whether RyRs were activated by ATP or Ca2+. DHA and oleic acid also inhibited RyRs, suggesting that free fatty acids generally inhibit RyRs at micromolar concentrations.  相似文献   

15.
Rotifers are an important live feed for first feeding larvae of many fish species. The use of concentrated algae cells in the mass culture of the rotifer Brachionus plicatilis (Brachionidae) has opened new horizons for research on this organism. Pastes of Rhodomonas salina (Pyrenomonadaceae) obtained either by centrifugation or flocculation with chitosan were preserved, with or without vitamin C, at -20 degrees C for four weeks and were evaluated biochemically (proteins, lipids, pigments and fatty acids contents) and subsequently, were used to feed the rotifer Brachionus plicatilis at a ratio of 25 mg/L/day. Four different microalgae pastes were prepared: (1) centrifuged and preserved with vitamin C (CV), (2) centrifuged and preserved without vitamin C (C), (3) flocculated and with vitamin C (FV) and (4) flocculated without vitamin C (F). All treatments showed similar contents of proteins and total lipids with respect to control culture (a fresh culture of R. salina), with mean values of 40.0 +/- 2.32% and 12.0 +/- 1.45%, respectively. The pheophytin a/chlorophyll a ratio, a general indicator of the chemical status of microalgal concentrates, was similar (0.09-0.11) between centrifuged pastes and control culture, but was found to be higher in flocculated pastes (1.28-1.48). The fatty acid profile varied with respect to the control culture, mainly in the proportion of the essential polyunsaturated fatty acids (PUFAs): eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Total PUFAs, EPA and DHA contents were statistically similar between centrifuged pastes and control culture (PUFAs: 47%, EPA: 4% and DHA: 4.7%), whereas values obtained for flocculated pastes were significantly lower. The rotifers grew equally well when fed with centrifuged pastes or control culture (maximum density: 320 rotifers/mL; instantaneous growth rate: 0.23 rotifers/day, fecundity: 1.49 eggs/female and productivity: 43 x 10(3) rotifers/L/day. No significant effect of vitamin C was found when used as a paste preservative. We concluded that centrifugation is an effective harvesting method, and that freezing to -20 degrees C for four weeks (no vitamin added), may help maintain the nutritional quality of R. salina paste, similar to fresh microalgae and can be offered to Brachionus plicatilis.  相似文献   

16.
We compared the fatty acid (FA) composition of the muscle and gonads of female Iberian sardines with hydrated oocytes collected during the 2002/03 spawning season off southern Portugal (November and February) and off western Portugal (February). Sardine condition and total FA concentration in the muscle decreased between the two sampling dates, while the gonadosomatic index was similar between samples. Total monounsaturated FA concentrations in sardine gonads were different for the three samples while saturated and polyunsaturated FA concentrations were similar. Significant linear relations were found between FA concentrations in female muscle and oocytes, including eicosapentaenoic acid (EPA; 20:5n − 3) and arachidonic acid (AA; 20:4n − 6), both being essential for normal larval development. The concentration of docosahexaenoic acid (DHA; 22:6n − 3) in oocytes was independent on muscle concentration, probably resulting from its selective transfer to the oocytes. The EPA/DHA ratio was highly conserved in sardine tissues, while DHA/AA and EPA/AA ratios varied significantly between samples. These results indicate that the FA content of eggs produced by sardines varies throughout the spawning season, egg FA concentrations decreasing as females lose condition, and FA composition also shows spatial variability. Both types of variability may have a significant impact on egg quality, particularly on the amount of reserves available to larvae affecting their resistance to starvation, and the appropriate FA composition required for normal growth.  相似文献   

17.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35?±?0.5 mg g?1 cell dry weight) and EPA (0.12?±?0.04 mg g?1 cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.  相似文献   

18.
Many species of marine animals have larval stages whose rates of growth in the plankton are regulated by complex combinations of biological and environmental factors. In this study, we focus on the physiological bases that underlie endogenous variation in growth potential of larvae. Our approach was based on experimental crosses of gravid adults from pedigreed families of the Pacific oyster, Crassostrea gigas. This produced large numbers of larvae with different growth rates when reared under similar environmental conditions of food and temperature. A total of 35 larval families were reared to test hypotheses regarding the physiological bases of growth variation. Growth rate of these larval families varied over a five-fold range, from 3.4 (± 0.5, S.E.) to 17.6 (± 0.6) μm day− 1. The suite of integrated measurements applied to study growth variation included size, biochemical compositions, rates of particulate and dissolved nutrient acquisition, absorption efficiencies, respiration rates and enzyme activities. We show that a complex set of physiological processes regulated differences in genetically determined growth rates of larvae. One-half of the energy required for faster growth came from an enhanced, size-specific feeding ability. Differences in absorption rates were not significant for slow- and fast-growing larvae, nor were differences in size-specific respiration rates. Metabolic processes accounted for the additional 50% of the energy “savings” required to explain enhanced growth rates. We propose that different protein depositional efficiencies could account for this energy saving. Quantitative analyses of the endogenous physiological factors that cause variation in growth rate will allow for a more sophisticated understanding of growth, survival and recruitment potential of larvae.  相似文献   

19.
为探索细胞松弛素B(CB)和低盐抑制第一极体诱导长牡蛎“海大3号”四倍体的最佳条件,研究了CB浓度(0.2、0.4、0.6和0.8 mg/L)、低盐(6、8、10和12)及诱导持续时间(10min、15min、20min和25min)对卵裂率、孵化率、四倍体率和诱导效率指数的影响,并分析了幼虫生长和生存情况。结果表明,在CB浓度为0.6 mg/L,诱导持续时间为15min时,四倍体率为(65.69±2.47)%,诱导效率指数最大;在盐度为8,诱导持续时间为15min时,四倍体率为(38.77±2.69)%,诱导效率指数最大。CB和低盐诱导组前期壳高大于对照组,后期小于对照组, CB诱导组壳高显著大于低盐诱导组(P<0.05), CB和低盐诱导组幼虫平均日增长量分别为(14.2±1.08)和(10.49±0.60)μm/d,均小于对照组(15.43±1.08)μm/d; 2个诱导组存活率始终低于对照组,低盐诱导组前期存活率高于CB诱导组,后期低于CB诱导组。综合来看, CB诱导法在四倍体率、诱导效率指数、12d存活率和生长速度等方面效果较好,适用于诱导长牡蛎“海大3号”四倍体。  相似文献   

20.
There is an increasing need for methods of cryopreservation of arthropods. In particular, Lepidoptera are extremely important in entomological applications for the protection of agricultural crops and forest ecosystems and also in many aspects of biodiversity conservation. Yet, few studies have dealt with cryopreservation techniques in species of this insect order.The aim of this study was to examine the chill sensitivity of eggs of the greater wax moth Galleria mellonella (L.) and the possibility to cryopreserve the eggs by vitrification methods.One day-old eggs were dechorionated with water solutions of 1.25% sodium hypochlorite and 0.04% Tween 80, treated with cryoprotective agents in two steps, subjected to rapid cooling by immersion in LN and stored in a mechanical freezer for 48 h at −140 °C. They exhibited survival rates of 1.6 ± 0.5% after being cooled in LN and 0.6 ± 0.2% after being stored in the mechanical freezer. 92.9% of the larvae that hatched from cryopreserved eggs completed development regularly, producing adults that bred and laid fertile eggs.The hatching rate of eggs in the F1 and F2 generations was higher than 90%. Adult emergences of the progeny of eggs stored at ultra-low temperatures allowed us to establish a laboratory colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号