首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This study was performed to compare both the Ca(2+)-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro. 2. Catalytic nitric oxide synthase activity was determined by the conversion of (L)-[(14)C]arginine to (L)-[(14)C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody. 3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation. 4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca(2+)-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations.  相似文献   

2.
Summary Total renal ischemia for various time intervals (0–50) min) resulted in the rapid and duration-dependent redistribution of polarized membrane lipids and proteins in renal proximal tubule cells. Following only 15 min of ischemia, apical membrane enrichment of NaK-ATPase, normally a basolateral membrane (BLM) enzyme, had increased (1.6±0.6vs. 2.9±1.2,P<0.01). In vivo histochemical localization of NaK-ATPase showed reaction product throughout the apical microvillar region. PTH-stimulatable adenylate cyclase, another BLM protein, was also found in ischemic but not control apical membrane fractions. One dimensional SDS-PAGE showed four bands, present in control BLM and ischemic apical membranes, which could not be found in control apical membrane fractions. Immunohistochemical localization of leucine aminopeptidase (LAP) showed the enzyme was limited to the apical domain in control cells. Following ischemic injury (50 min), LAP staining could be seen within the cell and along the BLM. Following 24 hr of reperfusion, the BLM distribution of LAP was further enhanced. With cellular recovery from ischemic injury (5 days), LAP was again only visualized in the apical membrane. Duration-dependent alterations in apical and BLM lipids were also observed. Apical sphingomyelin and phosphatidylserine and the cholesterol-tophospholipid ratio decreased rapidly while apical phosphatidylcholine and phosphatidylinositol increased. Taken together, these results indicate renal ischemia causes rapid duration-dependent reversible loss of surface membrane polarity in proximal tubule cells.  相似文献   

3.
The ultrastructural localization of adenylate cyclase was studied in bovine cumulus-oocyte complexes. Adenylate cyclase was observed on the plasma membrane of the oocyte and occasionally on the plasma membrane of cumulus cells. The cytochemical observations presented demonstrate that there is more adenylate cyclase in cumulus-oocyte complexes after in vitro stimulation with forskolin. The presence of adenylate cyclase upon the oocyte was more pronounced. In addition adenylate cyclase appeared to be localized on the cumulus cells, especially between junctional complexes of cumulus cells and on cumulus cell processes contacting the oocyte. The cumulus cells never showed the presence of adenylate cyclase in the absence of forskolin. No changes in the presence of adenylate cyclase were observed during in vitro meiotic maturation.  相似文献   

4.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

5.
Changes in the activity of three mitochondrial enzymes in rat liver after in vitro ischemia have been determined by enzyme histochemical methods. The changes were correlated with the appearance in the electron microscope of flocculent densities in the mitochondria indicative of irreversible cell injury. The flocculent densities were observed in rat liver after about 2 h of ischemia in vitro at 37 degrees C. At the same time the activity of glutamate dehydrogenase, localized in the mitochondrial matrix, started to decrease. However, the activities of succinate dehydrogenase localized in the inner membrane of mitochondria, as well as monoamine oxidase of the mitochondrial outer membrane did not change at that stage. It is concluded from the results of this study and those of others that flocculent densities are formed by denaturation of proteins of the mitochondrial matrix in which glutamate dehydrogenase takes part. It should be considered more as a sign than as the cause of cell death.  相似文献   

6.
Rat liver plasma membranes contain transglutaminase activity and a large molecular weight protein aggregate that serves as a substrate for this enzyme (Slife, C.W., Dorsett, M.D., Bouquett, G.T., Register, A., Taylor, E., and Conroy, S. (1985) Arch. Biochem. Biophys. 241, 329-336; Slife, C.W., Dorsett, M.D., and Tillotson, M.L. (1986) J. Biol. Chem. 261, 3451-3456). When purified plasma membranes were sonicated and the different plasma membrane domains were separated by sedimentation through a linear sucrose gradient, virtually all of the transglutaminase activity and the large molecular weight transglutaminase substrate were associated with membrane fragments which migrated to a very dense region of the gradient (1.18 g/cm3). The bile canalicular markers, 5'-nucleotidase and HA-4 antigen, were predominantly found at 1.11 g/cm3, while most of the sinusoidal/lateral marker, CE-9 antigen, was detected at 1.14 g/cm3. Smooth membrane vesicles were observed chiefly at the lighter densities upon morphological analysis, while many filament-bearing, plasma membrane segments and junctional complexes were contained in the heavy transglutaminase fractions. These data show that the plasma membrane transglutaminase and the large molecular weight transglutaminase substrate are associated with a distinct region of the plasma membrane.  相似文献   

7.
Oxidative stress is a recognized pathogenic factor in ischemia/reperfusion injury (IRI). Iron induced generation of reactive oxygen species (ROS) in vitro reduces both the Na+K+-ATPase activity and Na+-Ca2+ exchanger of synaptosomal membranes, concomitantly with alteration of physical state of membranes. Oxidative insult also leads to the loss of ability of endoplasmic reticular membranes (ER) to sequester Ca2+ as well as to the increase of Ca2+ permeability. Furthermore, ROS induces both lipid peroxidation and lipid-independent modifications of membrane proteins. Acute in vivo ischemia alters kinetic parameters of Na+K+-ATPase affecting mainly the dephosphorylation step of ATPase cycle with parallel changes of Na+-Ca2+ exchanger and alterations of physical membrane environment. Subsequent reperfusion after ischemia is associated with decrease of immuno signal for PMCA 1 isoform in hippocampus. In addition, incubation of non-ischemic membranes with cytosol from ischemic hippocampus decreases level of PMCA 1 in non-ischemic tissues. Loss of PMCA 1 protein is partially protected both by calpain- and by non-specific protease inhibitors which suggest possible activation of proteases in the reperfusion period. On the other hand, ischemia does not affect the level of Ca2+ pump (SERCA 2b) and calreticulin of intracellular Ca2+ stores. However, IRI resulted in a decrease of IP3 receptor I and altered active Ca2+ accumulation into the ER. A non-specific alteration of physical properties of total membranes such as the oxidative modifications of proteins as well as the content of lipoperoxidation products can also be detected after IRI. ROS can alter physical and functional properties of neuronal membranes. We discuss our results suggesting that ischemia-induced disturbation of ion transport systems may participate in or follow delayed death of neurons after ischemia.  相似文献   

8.
In vitro experimental models designed to study the effects of hypoxia and ischemia typically employ oxygen-depleted media and/or hypoxic chambers. These approaches, however, allow for metabolites to diffuse away into a large volume and may not replicate the high local concentrations that occur in ischemic myocardium in vivo. We describe herein a novel and simple method for creating regional hypoxic and ischemic conditions in neonatal rat cardiac myocyte monolayers. This method consists of creating a localized diffusion barrier by placing a glass coverslip over a portion of the monolayer. The coverslip restricts covered myocytes to a thin film of media while leaving uncovered myocytes free to access the surrounding bulk media volume. Myocytes under the coverslip undergo marked morphology changes over time as assessed by video microscopy. Fluorescence microscopy shows that these changes are accompanied by alterations in mitochondrial membrane potential and plasma membrane dynamics and eventually result in myocyte death. We also show that the metabolic activity of myocytes drives cell necrosis under the coverslip. In addition, the intracellular pH of synchronously contracting myocytes under the coverslip drops rapidly, which further implicates metabolic activity in regulating cell death under the coverslip. In contrast with existing models of hypoxia/ischemia, this technique provides a simple and effective way to create hypoxic/ischemic conditions in vitro. Moreover, we conclude that myocyte death is hastened by the combination of hypoxia, metabolites, and acidosis and is facilitated by a reduction in media volume, which may better represent ischemic conditions in vivo.  相似文献   

9.
M S Liu  S Ghosh  Y Yang 《Life sciences》1983,33(20):1995-2002
The effects of endotoxin administration on the fluidity of dog liver plasma membranes and their relationship with changes in phospholipase A2 activity were studied. Endotoxin administration decreased the fluidity of liver plasma membranes and this decrease was reversible by phosphatidylcholine. The endotoxin-induced decrease in membrane fluidity could be mimicked by digesting control liver membranes with exogenous phospholipase A2. Endotoxin administration also increased the endogenous phospholipase A2 activity. Endotoxin in vitro had no phospholipase A2-like activity but it activated the hydrolytic activity of exogenous phospholipase A2. Based on these data, it is concluded that endotoxin administration decreased the fluidity of canine liver plasma membranes by acting through activation of phospholipase A2. The decrease in membrane lipid fluidity induced by endotoxin administration may play a significant role in the development of the pathophysiology of endotoxic shock at the cellular level.  相似文献   

10.
To examine biochemically the effect of ischemia on cellular membranes, microsomal membrane structure and function in ischemic rat liver cells was studied. One-half hour of ischemia produced little or no evidence of histologic cell death 24 h after the reestablishment of blood flow and produced no detectable changes in five separate microsomal parameters measured in vitro. With 2 h of ischemia, histological evidence of liver cell death was quite marked 24 h after reflow had been established, and there were decreases in both microsomal calcium pump and glucose 6-phosphatase activities which could not be explained by differences in relative purity of the samples. Cytochrome P-450 content, glucuronyl transferase activity, and protein composition as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis in the 2-h ischemic microsomes were similar to those of 0.5-h ischemic preparations. These results indicate the presence of microsomal membrane dysfunction in ischemic rat liver cells temporally related to the onset of irreversible cellular damage. The possible molecular basis of this dyfunction is discussed.  相似文献   

11.
Several observations suggest that the accumulation of metabolites within ischemic regions may contribute to the electrophysiological derangements characteristic of ischemic myocardium. We, and more recently others, have detected an increase in lysophosphoglycerides (LPGs) in ischemic tissue in vivo as well as in effluents from ischemic regions. At comparable concentrations, LPGs induce electrophysiological alterations in vitro analogous to changes seen in vivo with ischemia. Experiments with [14C]lysophosphatidylcholine indicated that incorporation comprising less than 1% of total cellular phospholipid is sufficient to induce electrophysiological derangements in isolated ventricular muscle. Reduction of pH to 6.7, analogous to the fall seen within minutes in ischemic tissue in vivo, potentiates the electrophysiological actions markedly without increasing membrane incorporation. In recent studies the activity of enzymes potentially responsible for the accumulation of LPGs during ischemia has been found to be altered by concomitants of ischemia, including increased concentrations of H+ and long-chain acyl carnitine. Thus, accumulation of LPGs and related compounds may contribute substantially to induction of electrophysiological derangements accompanying ischemia and may be amenable to therapeutic manipulation designed to alleviate malignant ventricular dysrhythmia.  相似文献   

12.
Mouse liver cell culture. I. Hepatocyte isolation   总被引:17,自引:0,他引:17  
A method for isolation of mouse liver cells by a two-step perfusion with calcium and magnesium-free Hanks' salt solution followed by a medium containing collagenase is described. Several variations of the commonly used procedure for rat liver cell isolation were quantitatively compared with respect to cell yield and viability. The optimal isolation technique involved perfusion through the hepatic portal vein and routinely produced an average of 2.3 x 10(6) viable liver cells/g body weight. Optimal perfusate collagenase concentration was found to be 100 U of enzyme activity per milliliter of perfusate. Light and electron microscopic evaluation of liver morphology after several steps of the isolation showed distinct morphologic changes in hepatocytes and other liver cells during perfusion. After perfusion with Hanks' calcium- and magnesium-free solution, many hepatocytes exhibited early reversible cell injury. These changes included vesiculation and slight swelling of the endoplasmic reticulum as well as mitochondrial matrix condensation. Subsequent to perfusion with collagenase, the majority of hepatocytes appeared connected to one another only by tight junctional complexes at the bile canaliculi. Multiple evaginations were seen on the outer membrane resembling microville and probably represented the remains of cell-to-cell interdigitations between hepatocytes and sinusoidal lining cells from the space of Disse. The cytoplasmic injury seen after Hanks' perfusion was reversed after collagenase perfusion. After mechanical dispersion, isolated mouse hepatocytes were spherical in shape and existed as individual cells; many (80 to 85%) were binucleated under hase contrast light microscopy. By electron microscopy, cells appeared morphologically similar in cytoplasmic constitution to that seen in intact nonaltered liver cells.  相似文献   

13.
Previous studies have shown that anti microtubule agents disrupt Golgi complexes in hepatocytes and other cells, causing breakdown or vesiculation of Golgi cisternal membranes. Whether this change in the structure of the Golgi membranes is associated with changes in Golgi membrane function is not known. The present study was initiated to investigate this issue; i.e., to determine whether anti-microtubule agents that cause structural changes in Golgi membranes in vivo would, at the same time, affect characteristic enzyme functions of Golgi membranes. To this end, colchicine was given to young rats in vivo and various hepatic subcellular membranes were subsequently isolated and utilized for enzyme assays. Initially it was shown that colchicine (2.5 mg/kg body wt.) given for 5h significantly decreased the activities of the Golgi membrane associated enzymes galactosyl-, sialyl- and N-acetylglucosaminyl-transferases. More detailed experiments indicated that low doses of colchicine (0.8 mg/kg body wt.), although less effective than higher doses, decreased the activities of the terminal glycosylating enzymes maximally at 5h, with partial and complete recovery at 12 and 24h respectively. Treatment in vivo of rats with vinblastine (20 mg/kg body wt.) for 5h mimicked the action of colchicine. Two microsomal glycosylating enzymes (mannosyl and N acetylglucosaminyl transferases) were unaffected by the treatment with colchicine, as were various hepatic 'marker' enzymes such as 5' nucleotidase, glucose 6 phosphatase and succinate: 2-(p iodophenyl)-3-(p nitrophenyl)-5-phenyltetrazolium reductase (succinate dehydrogenase; EC 1.3.99.1), which were found to be enriched in plasma membrane, endoplasmic-reticulum and mitochondrial-membrane fractions respectively. These results show that anti-microtubule agents specifically suppress the activity of Golgi-associated glycosyltransferases in liver. Although it seems likely that these changes are related to the previously observed structural changes in hepatocyte Golgi complexes after colchicine treatment, to what extent the results are linked to the interaction of colchicine with microtubule protein remains to be clarified.  相似文献   

14.
Summary Amino acid transport and incorporation have been studied in vitro in rat pancreatic lobules after maximal and supramaximal hormonal stimulation with caerulein. Incorporation into proteins was increased already after 30 and 120 min of maximal stimulation, but was decreased after the infusion of a supramaximal dose. Uptake of neutral amino acids was monitored using labeled leucine and -aminoisobutyric acid (AIB). In the case of leucine the free pool was consistently reduced after maximal stimulation, while supramaximal doses led to an increase which could be potentiated by the addition of 2mM tetracaine. Using AIB, a significant increase in the intracellular pool was observed after maximal stimulation, conversely a decrease after supramaximal stimulation. Release of labeled leucine and AIB from preloaded lobules during incubation in the cold was significantly reduced after maximal secretory stimulation, but was found enhanced by 200 to 300 percent after supramaximal stimulation. No fine structural alterations at junctional complexes or at both the lateral and luminal plasma membranes were observed after maximal stimulation except an increased number of exocytotic figures at the luminal face. However, supramaximal stimulation led to progressive rarefaction of the tight junctional network and disintegration of the gap junctions. Concomitantly, an equal distribution of membrane particles on both faces of the plasma membrane together with a random occurrence of exocytotic figures were observed.Supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (SFB 122, project C 5). Dedicated to Professor Dr. Gerhard Petry, Marburg, on the occasion of his 65th birthday  相似文献   

15.
Sea urchin (Arbacia punctulata) eggs and zygotes were treated with filipin in an effort to examine changes in membrane sterols at fertilization. The plasma membrane of treated unfertilized eggs possessed numerous filipin/sterol complexes, while fewer complexes were associated with membranes delimiting cortical granules, demonstrating that the plasmalemma is relatively rich in β-hydroxysterols in comparison to cortical granule membrane. Following fusion with the plasmalemma, membrane formerly delimiting cortical granules underwent a dramatic alteration in sterol composition, as indicated by a rapid increase in the number of filipin/sterol complexes. In contrast, portions of the zygote plasma membrane, derived from the plasmalemma of the unfertilized egg, displayed little or no change in filipin/sterol composition. Other than regions of the plasma membrane engaged in endocytosis, the plasmalemma of the zygote possessed a homogeneous distribution of filipin/sterol complexes and appeared similar to that of the unfertilized egg. These results demonstrate that following its fusion with the egg plasmalemma, membranes, formerly delimiting cortical granules, undergo a dramatic alteration in sterol composition. Changes in the localization of filipin/sterol complexes are discussed in reference to alterations in egg plasmalemmal function at fertilization.  相似文献   

16.
After glutaraldehyde fixation and treatment with ethanolic phosphotungstic acid (E-PTA) before plastic embedding, sections of rat large intestine showed a characteristic electron contrasting pattern in epithelial cells. The axis of microvilli, terminal web, a thin band below the luminal plasma membrane, centrioles and junctional complexes (tight junctions, adherens junctions, and desmosomes) appeared highly contrasted. In addition to protein components of microfilaments and intermediate filaments, proteins from the junctional complexes could also be implicated in the contrasting reaction with E-PTA. Mitochondrial membranes, chromatin masses, and nucleoli of enterocytes showed considerable electron density, whereas no reaction was found in the glycocalyx and mucin content of goblet cells. The clear visualization of cytoskeleton elements and junctional complexes by E-PTA contrasting represents a simple and valuable method for studies on the normal and pathological organization of these structures in epithelial cells.  相似文献   

17.
The ability of acute insulin treatment to elicit a redistribution of the liver insulin-like growth factor-II/ mannose 6-phosphate (IGF-II/M6P) receptor has been studied in rats, using cell fractionation. Injection of insulin (0.4-50 microg) led to a time- and dose-dependent decrease in IGF-II binding activity in Golgi-endosomal (GE) fractions, along with an increase in activity in the plasma membrane (PM) fraction; only receptor number was affected. Quantitative subfractionation of the microsomal fraction on sucrose density gradients showed that IGF-II binding activity distributed similarly to galactosyltransferase (a Golgi marker), at slightly higher densities than in vivo internalized (125)I-insulin, and at lower densities than 5' nucleotidase and alkaline phosphodiesterase (two plasma membrane markers). Insulin treatment led to a slight time-dependent and reversible shift of IGF-II binding activity toward higher densities. Subfractionation of the GE fraction on Percoll gradients showed that IGF-II binding activity was broadly distributed, with about 60% at low densities coinciding with galactosyltransferase and early internalized (125)I-insulin and with 40% at high densities in the region of late internalized (125)I-insulin. Insulin treatment caused a time-dependent and reversible shift of the distribution of IGF-II binding activity toward low densities. On SDS-PAGE, the size of the affinity-labeled IGF-II/M6P receptor was comparable in GE and PM fractions (about 255 kDa), but on Western blots receptor size was slightly lower in the latter (245 kDa) than in the former (255 kDa). Insulin treatment did not affect the size, but modified the abundance of the IGF-II/M6P receptor in a manner similar to that of IGF-II binding. In vivo chloroquine treatment fully suppressed the changes in IGF-II binding activity in liver GE and PM fractions observed in insulin-treated rats. We conclude that insulin elicits a time-dependent and reversible redistribution of liver IGF-II receptors from Golgi elements and endosomes to the plasma membrane, presumably via early endosomes.  相似文献   

18.
In vitro treatment of crude particulate fractions of male rat ventral prostate and female rat liver with membrane fluidizers (aliphatic alcohols) has been previously reported by us to increase prolactin (PRL) receptor levels, presumably by unmasking cryptic prolactin receptors. The objective of this study was to determine if similar in vitro treatment of purified plasma membrane- and Golgi-rich fractions of male rat prostate and female rat liver with ethanol produced differential effects on prolactin binding in these two subcellular fractions. The degree of fluidization was monitored by a fluorescence polarization method using 1,6-diphenylhexatriene. 125I-PRL specific binding to Golgi-rich fractions of male ventral prostate and female liver was approximately 4-fold higher than that observed in plasma membrane-rich fractions. The microviscosity parameter, inversely related to lipid fluidity, was consistently lower in Golgi-rich fractions than that in plasma membrane-rich fractions in both prostate and liver. In vitro ethanol treatment of prostatic and hepatic plasma membrane fractions produced a dose-related increase and then decline in prolactin binding and a maximal (60-75%) increase in prolactin binding was observed at 4.8% and 2.0% ethanol in prostatic and hepatic membranes, respectively. This in vitro treatment also produced a significant increase in apparent lipid fluidity of plasma membrane-rich fractions of prostate gland and liver. However, similar in vitro ethanol treatment of Golgi fractions of both prostate gland and liver exhibited little increase in prolactin binding without changing microviscosity. Our observations are consistent with the direct relationship between membrane fluidity and prolactin receptor levels. The changes in prostatic and hepatic plasma membrane fractions following in vitro ethanol treatment suggest that prolactin receptors located on the plasma membranes may be modulated (via membrane lipid microviscosity changes) in vivo to a greater extent by various physiological agents than those located within the Golgi fraction.  相似文献   

19.
Effect of Brain Ischemia on Protein Kinase C   总被引:7,自引:0,他引:7  
We examined the influence of brain ischemia on the activity and subcellular distribution of protein kinase C (PKC). Two different models of ischemic brain injury were used: postdecapitative ischemia in rat forebrain and transient (6-min) cerebral ischemia in gerbil hippocampus. In the rat forebrain model, at 5 and 15 min postdecapitation there was a steady decrease of total PKC activity to 60% of control values. This decrease occurred without changes in the proportion of the particulate to the soluble enzyme pools. Isolated rat brain membranes also exhibited a concomitant decrease of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding with an apparent increase of the ligand affinity to the postischemic membranes. On the other hand, the ischemic gerbil hippocampus model displayed a 40% decrease of total PKC activity, which was accompanied by a relative increase of PKC activity in its membrane-bound form. This resulted in an increase in the membrane/total activity ratio, indicating a possible enzyme translocation from cytosol to the membranes after ischemia. Moreover, after 1 day of recovery, a statistically significant enhancement of membrane-bound PKC activity resulted in a further increase of its relative activity up to 162% of control values. In vitro experiments using a synaptoneurosomal particulate fraction were performed to clarify the mechanism of the rapid PKC inhibition observed in cerebral tissue after ischemia. These experiments showed a progressive, Ca(2+)-dependent, antiprotease-insensitive down-regulation of PKC during incubation. This down-regulation was significantly enhanced by prior phorbol (PDBu) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号