首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in cell cycle regulation underlie the unrestricted growth of neoplastic astrocytes. Chemotherapeutic interventions of gliomas have poor prognostic outcomes due to drug resistance and drug toxicity. Here, we examined the in vitro growth kinetics of C6 glioma (C6G) cells and primary astrocytes and their responses to 2 phase-specific inhibitors, lovastatin and hydroxyurea. C6G cells demonstrated a shorter G1 phase and an earlier peak of DNA synthesis in S phase than primary astrocytes. As C6G cells and primary astrocytes re-entered the cell cycle in the presence of lovastatin or hydroxyurea, they exhibited different sensitivities to the inhibitory effects of these agents, as measured by [3H]-thymidine incorporation. Compared to primary astrocytes, C6G cells were more sensitive to lovastatin, but less sensitive to hydroxyurea. Studies using 2 different paradigms of exposure uncovered dramatic differences in the kinetics of DNA synthesis inhibition by these 2 agents in C6G cells and primary astrocytes. One notable difference was the ability of C6G cells to more easily recover from the inhibitory effects of hydroxyurea following short exposure. Our results provide insight into C6 glioma drug resistance as well as the inhibitory effects of these 2 phase-specific inhibitors and their chemotherapeutic potential.  相似文献   

2.
Human glia cells blocked post-mitotically by serum deprivation require about 8–12 h of continuous stimulation by growth factors to become committed to DNA synthesis. DNA synthesis begins about 5 h after growth factor withdrawal. The length of time until the S phase began and the length of the apparent commitment period, i.e. the time when cells progressed towards the G1/S transition point even in the absence of growth factors were independent of the nature of the growth factors studied (calf serum, platelet-rich human serum, epidermal growth factor). Epidermal growth factor and calf serum were mutually interchangeable during the pre-commitment period. Increasing cell density reduced the number of cells which entered DNA synthesis, but had no effect on the length of the apparent commitment period or the latent time until DNA synthesis commenced. The requirement for a long exposure to a growth factor may be an important safeguard in normal cells against “accidental” entry into the cell cycle, since malignant glia cells do not show the same requirement.  相似文献   

3.
Multiplication-stimulating activity (MSA) for chicken embryo fibroblasts was purified from serum-free medium conditioned by the growth of a rat liver cell line. A comparison between calf serum and purified MSA was made regarding the regulation of the fibroblast cell cycle. Addition of serum or MSA to stationary, quiescent cells stimulates them to enter the DNA synthetic phase after a characteristic lag period. Exposure to serum for shorter periods of time will irreverisbly commit cells to continue through the cell cycle and initiate DNA replication in the absence of serum. In contrast, the withdrawal of purified MSA from the medium results in an abrupt halt in the progression of cells towards S phase. The results of labeled thymidine incorporation and autoradiographic experiments clearly indicate that the point at which cells become irreversibly committed to enter the DNA synthetic period is at or near the G1-S boundary. The abrupt decay of the stimulation upon withdrawal of purified MSA provides a unique opportunity to investigate the biochemistry of this discrete phase of the cell cycle.  相似文献   

4.
The cell cycle kinetics of bladder urothelial cells regenerating after partial cystectomy were investigated in 96 female Wistar rats using the percentage labelled mitoses method. In the area of resection a mean cell cycle time (TC) of 15 h was determined. The DNA synthesis phase (TS) lasted 6 h and the premitotic-postsynthetic phase together with the mitosis phase (TG2 + M) 1.5 h, thus giving a presynthetic-postmiotic phase (TG1) of 7.5 h. Similar values were found for the urothelial cells in the stump: the mean cycle time measured 14 h, the TS-phase 6 h, the TG6 + M-phase 2 h and the TG1-phase 6 h. These data are discussed with respect to known cell cycle parameters of bladder urothelium regenerating in response to cytotoxic agents and of neoplastic urothelial cells. The reported findings provide a basis for further investigations using weak carcinogens and threshold doses of potent carcinogens to test the working hypothesis that stimulation of proliferation following partial cystectomy is capable of initiating, accelerating and/or potentiating carcinogenic cell transformation in the urinary bladder.  相似文献   

5.
BHK21 cells cultured in minimal essential medium (Eagle) supplemented with 10% dialyzed fetal calf serum did not grow as they did in whole serum containing medium. Logarithmic growth was, however, initiated after a lag period, the length of which was dependent upon the cell density: medium volume ratio. The quiescent cells conditioned the medium during this lag period, and growth stimulation was apparently due to the release of serine into the medium. Cells cultured in 10% dialyzed serum plus the low molecular weight fraction of serum (serum dialysate), grew with kinetics similar to cells cultured in serum containing medium. When serum dialysate was chromatographed on Bio-gel P-2 the growth promoting activity eluted with the amino acids. Each of the non-essential amino acids was tested for its ability to stimulate the growth of cells in 10% dialyzed serum. Serine was capable of stimulating cell growth to the same extent as 10% serum dialysate and its concentration optimum was similar to its concentration in 10% serum dialysate. The remaining non-essential amino acids were either slightly stimulatory or had no effect on cell growth. Shifting a logarithmically growing population of cells to serine-free medium resulted in the accumulation of 95% of the cells in the G1 phase of the cell cycle within 24 h. Escape from the G1 block could occur if serine was added to the medium or if the cells were allowed to condition the medium. Entry of cells into S phase after the addition of 0.05 μmoles/ml of serine followed a 4–6 h lag and 80% of the cells were synthesizing DNA 12 h after shift-up.  相似文献   

6.
Hepatocytes, isolated from adult (250-350 g) rats, attached and survived well in primary culture on highly diluted (less than 1 microgram/cm2) collagen gel in a synthetic medium without serum or hormones. About 20% of the cells "spontaneously" entered S phase during the first 4 days of culturing, and mitoses were easily demonstrated at the near physiological concentration (1.25 mM) of Ca++ prevailing in the medium. Cultures given 9 nM epidermal growth factor (EGF) and 20 nM insulin 20 h after inoculation showed vigorous DNA synthesis and mitotic activity. Autoradiography of such cells exposed to [3H]thymidine allowed the determination of the following cell cycle parameters: Lag period from EGF/insulin stimulation till onset of increased DNA synthesis, 17 h; rate of entry into S phase (kG1/S), 0.028/h; duration of S phase, 8.4 h; duration of G2 phase, 2.7 h. The peak DNA synthesis (pulse labelling index, 24%) and peak mitotic activity (mitotic index, 1.7%) occurred 35 and 43 h, respectively, after the stimulation with EGF/insulin. These values are comparable to those reported during the in vivo compensatory hyperplasia following partial hepatectomy of adult rats. A marked variation of the intranuclear [3H]thymidine pulse labelling pattern was noted: During the first 1.5 h of the S phase, the labelling was extranucleolar and during the last 1.5 h chiefly nucleolar. The cells survived well in the absence of glucocorticoid, whose effect on cell cycle parameters therefore could be studied. Dexamethasone (25-250 nM) did not appreciably affect the durations of S phase and G2 phase or the pattern of preferential extranucleolar and nucleolar DNA synthesis within the S phase.  相似文献   

7.
8.
Primary cultures of newborn rat cerebrum, which are composed of glial cells (principally astroglia), were used for examining the relationship between dolichol-linked glycoprotein synthesis and DNA synthesis in developing cerebral glia. The cells were synchronized by reducing the content of fetal calf serum in the culture medium from 10 to 0.1% (vol/vol) for 48 h between days 4 and 6 in culture. Reversal of the quiescent state by return of the cultures to 10% serum causes a marked increase in DNA synthesis 12-24 h later. A sharp increase in glycoprotein synthesis (incorporation of [3H]mannose) occurred in the first 12 h after serum repletion, preceding the increase in DNA synthesis. Tunicamycin, an inhibitor of the dolichol-linked pathway to glycoprotein synthesis at the first committed step in oligosaccharide formation, promptly and completely prevented the increase in glycoprotein synthesis and, in addition, the subsequent increase in DNA synthesis. The effects of tunicamycin on glycoprotein and DNA syntheses were reversible, and no comparable effect on total protein synthesis was observed. When tunicamycin was added only during a temporally circumscribed period in G1, i.e., from 3 to 9 h after serum repletion, the increase in DNA synthesis between 12 and 24 h after repletion was still markedly inhibited, i.e., to approximately 45% of the value in untreated cultures. The data thus show that there is a requirement for dolichol-linked glycoprotein synthesis for the subsequent occurrence of DNA synthesis and that this requirement is expressed late in the G1 phase of the cell cycle.  相似文献   

9.
10.
The effect of time-controlled exposures to cholera toxin (CT) on intracellular levels of cyclic AMP (cAMP) and on the proliferative response of serum-stimulated 3T3 cells was investigated. Continuous exposure to CT caused up to 8-fold raises in cAMP content and inhibited DNA replication by delaying G1-S transition and by reducing the fraction of cells committed to DNA replication. In contrast, short exposures to CT during G0-G1 transition increased the fraction of cells responding to serum stimulation and potentiated the serum-induced morphological changes in the cell monolayer. A short exposure during late G1 phase, however, inhibited the onset of DNA synthesis but had little effect on ongoing DNA replication. The results indicate that cAMP has diverse and opposite effects on two defined restriction points in cell cycle control. Cyclic AMP was positively involved in the acquisition of the state of competence by quiescent cells (G0-G1 transition) but antagonistic on the onset of DNA replication (G1-S transition) in committed cells. The observations reconcile a number of controversial conclusions regarding the role of cAMP in cell cycle control.  相似文献   

11.
To elucidate conditions which affect the lag time for resting cells to enter S phase after serum stimulation, we used a wild-type 3Y1 rat fibroblast line and four temperature-sensitive mutants of 3Y1 (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203). Among these five lines, in only tsG125 cells was there an obviously prolonged lag time with increase in time in resting state at 33.8 degrees C. The resting wild-type 3Y1 cells, preexposed to 39.8 degrees C, also showed a prolongation of lag time. The prolongation in tsG125 had a certain limit. Preexposure to 39.8 degrees C before serum stimulation accelerated such prolongation in tsG125 to its limit, but did not change the limit, per se. Resting tsG125 cells stimulated by serum at 39.8 degrees C, did not enter S phase, yet they did advance toward S phase. When they were kept at 39.8 degrees C, they retreated toward a deeper resting state ("G0") with time. These retreats correlated with the decrease in stimulating activity in the culture media. About 20% of the resting tsG125 cells stimulated by serum at 39.8 degrees C were committed to enter S phase, when the extent of commitment was examined at 33.8 degrees C. Most of the tsG125 cells committed at 33.8 degrees C did not enter S phase, when the extent of commitment was examined at 39.8 degrees C. More cells were committed after stimulation at 33.8 degrees C than at 39.8 degrees C, when the test was done at 33.8 degrees C. We suggest that resting cells may be reversibly changed within range of resting states, in either direction, that is, advance toward S phase or retreat toward deeper "G0." These changes may be determined by alterations in the balance between synthesis and decay of the preparedness for the initiation of DNA synthesis caused by cellular response to environmental changes (e.g., medium activity, temperature, etc.). The ts defect in tsG125 may affect the cell cycle progression, both before and after commitment by serum.  相似文献   

12.
Induction of DNA synthesis by the tumor promoter tetradecanoyl phorbol acetate (TPA) was studied in a line of cultured rat fibroblasts (Rat-1) and their ffRous sarcoma virus-transformed derivative (Rat-1(RSV)). Following serum deprivation for 54 h to achieve quiescene, semiconservative DNA replication was measured by incubation of cells in BrdUrd and FdUrd after serum stimulation in the presence or absence of TPA. Optimal concentrations of TPA (0.1–0.5 μg/ ml) in serum-free medium induced a small increase (10–15%) in the amount of DNA made over a 30-h period in both Rat-1 and Rat-1 (RSV) cells. When Rat-1 cells were stimulated by a 4-h serum pulse, 30% of the DNA was replicated by 30 h. If the serum pulse was follwed by TPA addition, 702% DNA replication wass observed. If the serum pulse was preceded by TPA addition, the onset of DNA synthesis waas delayed by several hous, but stimulation of DNA synthesis occurred. In contrast, the Rat-1 (RSV) cells did not show an increase in DNA synthesis induced by TPA in similar protocols, but the serum-induced onset on DNA synthesis was delayed by several hours in the presence of TPA. Therefore, TPA acts as a co-inducer of DNA synthesis in the Rat-1 but not in the Rat-(RSV) cells. The parent alcohol, phorbol, was inactive in Rat-1 cells, but delayed the onset of DNA synthesis in the Rat(RSV) cells. We conclude that the co-inducing and delaying activities of TPA on DNA synthesis appear to be distinct and to act at different points in the G1 phase of the cell cycle.  相似文献   

13.
Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells   总被引:1,自引:0,他引:1  
Synthesis of DNA-binding proteins was investigated in WI-38 human diploid fibroblast cultures after stimulation with serum containing medium. Density-inhibited confluent monolayers of young (phase II) and aging (phase III) WI-38 cells can be stimulated to synthesize DNA by replacing the medium with fresh medium containing 10% fetal calf serum. Of the phase II cells, 35–50% showed a partially synchronized burst of DNA-synthesizing activity between 15 and 24 h whereas only 4–6% of phase III cells showed DNA-synthesizing activity at 20 h, and that cell fraction was increasing even at 38 h. This suggests either an extremely prolonged G 1 in stimulated phase III cells, or a heterogeneity of the population (e.g., a mixed population of pre- and postmitotic cells) for phase III cells. At various times after the change of medium, DNA-binding protein synthesis was examined in these stimulated cultures. Protein of mol. wt 20 000–25 000 D accumulated rapidly during early G 1 and declined thereafter, whereas larger protein (40 000 and 68 000 D) accumulated during the late G 1 or G 1-S transition period indicating that accumulation of these proteins is associated with the onset of DNA synthesis in the serum-stimulated cells. In cultures where the DNA synthesis has been reduced or inhibited by an excess of thymidine, hydroxyurea or dibutyryl cAMP, the accumulation of the larger proteins (40 000 and 68 000 D) was neglible as compared with non-stimulated cultures. Hydrocortisone did not exert any effect on the DNA-binding protein synthesis in phase II cells. However, it seems to increase the cell fraction which can respond to the serum factor in phase III cells as evidenced from the pattern of DNA-binding proteins synthesis.  相似文献   

14.
Inhibitory diffusible factor IDF45, a G1 phase inhibitor   总被引:1,自引:0,他引:1  
C Blat  G Chatelain  G Desauty  L Harel 《FEBS letters》1986,203(2):175-180
An inhibitory diffusible factor of 45 kDa (IDF45) was isolated from medium conditioned by dense cultures of 3T3 cells. The procedure involved Bio-Gel P150 chromatography and 2 reverse-phase FPLC. After the final step of purification, 60 ng/ml of IDF45 inhibited 50% of alpha-globulin-stimulated DNA synthesis. It was shown that IDF45 acted in the G1 phase of the cell cycle. When added for 8 h in the G1 phase of the cell cycle, it was able to inhibit DNA synthesis in the S phase which followed this G1 phase. Furthermore, IDF45 inhibited the early stimulation of RNA synthesis induced by alpha-globulin.  相似文献   

15.
The objective of this study is to investigate the activity of methylthioadenosine phosphorylase (MTA-Pase) in mammalian cells stimulated by serum to proliferate and during their cell cycle. A direct correlation between growth rate and MTA-Pase activity in chinese hamster ovary (CHO) cells was observed. High MTA-Pase activity was observed during the exponential growth phase followed by a low enzyme activity during plateau phase of growth. To understand whether the fluctuations in the enzyme activity was cell cycle dependent, initially the activity of MTA-Pase was studied in plateau phase (G0) CHO cells as they synchronously go into S phase upon plating in fresh medium. The MTA-Pase activity in G0 cells before initiation of growth was 10.3 n.mol/mg protein/30'. A peak activity of 16.0 n.mol/mg/30 min was found at 12 hr after stimulation of proliferation by serum. These results indicate a peak MTA-Pase activity between 10-12 hr after stimulation of proliferation coinciding with the initiation of DNA synthesis. The activity of the enzyme slowly decreased as the cells completed their DNA synthesis. To understand whether these fluctuations are cell cycle specific, HeLa cells were synchronized in different phases and MTA-Pase activity was studied. The specific activities of the enzyme were 2.76, 2.99, 3.97, 3.28 and 3.65 n.moles/mg/30 min. in mitosis, early G1, late G1, S and G2 phases of the cell cycle respectively. These results indicate that MTA-Pase activity peaks in late G1 phase before the initiation of DNA synthesis, similar to the polyamine biosynthetic enzymes and might play a role in the initiation of DNA synthesis by salvage of adenine into nucleotide pools.  相似文献   

16.
Expression of the small-subunit p49 mRNA of primase, the enzyme that synthesizes oligoribonucleotides for initiation of DNA replication, was examined in mouse cells stimulated to proliferate by serum and in growing cells. The level of p49 mRNA increased approximately 10-fold after serum stimulation and preceded synthesis of DNA and histone H3 mRNA by several hours. Expression of p49 mRNA was not sensitive to inhibition by low concentrations of cycloheximide, which suggested that the increase in mRNA occurred before the restriction point control for cell cycle progression described for mammalian cells and was not under its control. p49 mRNA levels were not coupled to DNA synthesis, as observed for the replication-dependent histone genes, since hydroxyurea or aphidicolin had no effect on p49 mRNA levels when added before or during S phase. These inhibitors did have an effect, however, on the stability of p49 mRNA and increased the half-life from 3.5 h to about 20 h, which suggested an interdependence of p49 mRNA degradation and DNA synthesis. When growing cells were examined after separation by centrifugal elutriation, little difference was detected for p49 mRNA levels in different phases of the cell cycle. This was also observed when elutriated G1 cells were allowed to continue growth and then were blocked in M phase with colcemid. Only a small decrease in p49 mRNA occurred, whereas H3 mRNA rapidly decreased, when cells entered G2/M. These results indicate that the level of primase p49 mRNA is not cell cycle regulated but is present constitutively in proliferating cells.  相似文献   

17.
Intracellular free calcium ([Ca2+]i) has been proposed to play an important part in the regulation of the cell cycle. Although a number of studies have shown that stimulation of quiescent cells with growth factors causes an immediate rise in [Ca2+]i (Rabinovitch et al., 1986; Vincentini and Villereal, 1986; Hesketh et al., 1988; Tucker et al., 1989, Wahl et al., 1990), a causal relationship between the [Ca2+]i transient and the ability of the cells to reenter the cell cycle has not been firmly established. We have found that blocking the mitogen-induced elevation of [Ca2+]i with the cytoplasmic [Ca2+]i buffer dimethyl BAPTA (dmBAPTA) also blocks subsequent entry of cells into S phase. The dose response curves for inhibition of serum stimulation of [Ca2+]i and DNA synthesis by dmBAPTA are virtually identical including an anomalous stimulation observed at low levels of dmBAPTA. Reversal of the [Ca2+]i buffering effect of dmBAPTA by transient exposure of the cells to the Ca2+ ionophore ionomycin also reverses the inhibition of DNA synthesis 20-24 h later. Ionomycin by itself does not stimulate DNA synthesis. These data are consistent with the conclusion that a transient increase in [Ca2+]i occurring shortly after serum stimulation of quiescent fibroblasts is necessary but not sufficient for subsequent entry of the cells into S phase. This study is the first to show a direct relationship between early serum stimulated Cai2+ increase and subsequent DNA synthesis in human cells. It also goes beyond recent studies on BALB/3T3 cells by providing dose response data and demonstrating reversibility, which are strong indications of a cause and effect relationship.  相似文献   

18.
Human glioblastoma-derived cell line, T98G, is arrested in the G1 phase of the cell cycle when serum is deprived. Using this cell line, we investigated the relation between the cell cycle and DNA single-stranded breaks, "nicks," by an in situ nick-translation method. When T98G cells were cultured without serum for 60 h, many small cells with condensed chromatin and scanty cytoplasm appeared. These small cells that were immunohistochemically considered to be in the G0 or early G1 phase had many nicks in DNA. When serum was added, these small cells with nicks disappeared within 1 to 4 h. VP-16, a DNA topoisomerase II inhibitor, delayed the disappearance of these small cells with nicks. This indicated that the action of DNA topoisomerase II on the chromatin is required to repair nicks in T98G glioma cells and to promote the progression from the quiescent to the proliferating phase.  相似文献   

19.
Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.  相似文献   

20.
Proliferating nonconfluent 3T3 cells become committed to proceed through the cell cycle or to enter G0 during the first post-mitotic part of G1 (G1pm). The decision to proceed through G1pm is dependent on the presence of serum growth factors in the culture medium. Cells that have passed this particular growth-factor-dependent cell cycle stage are independent of serum growth factors and undergo mitosis on schedule. We report here that G1ps, S, and G2 cells cease to increase in size when serum is withdrawn. As a result the mitotic cell size after 8 hours serum starvation is reduced to approximately 60% of the normal mitotic cell. This reduced growth in cell size is due to a rapid decrease in protein synthesis and some increase in protein degradation. This dissociation between growth in size and cell-cycle progression within a single cell cycle provides a new approach to study the two processes separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号