首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The intensity of an ABA (abscisic acid) signal as a root-to-shoot signal, as well as its action on root hydraulic conductivity, strongly depends on the distribution of ABA during its radial transport across roots. Therefore ABA was visualized by immunolocalization with monoclonal ABA antibodies under conditions of lateral water flow induced by the application of a pressure gradient to the cut surface of the mesocotyl of maize seedlings. From the labelling of rhizodermis, hypodermis, cortical cells, and endodermis of roots of hydroponically (no exodermis) and aeroponically (with exodermis) grown seedlings it is concluded that the exodermis acts as a barrier to apoplastic transport that controls ABA uptake and efflux, but that the endodermis can easily be overcome via an apoplastic bypass. In longitudinal sections the strongest ABA signals originated from the root cap and the meristematic root tip, which is in agreement with the non-vacuolated cells of these tissues being an effective anion trap for ABA.  相似文献   

2.
Abiotic and biotic stresses are the major factors that negatively impact plant growth. In response to abiotic environmental stresses such as drought, plants generate resistance responses through abscisic acid (ABA) signal transduction. In addition to the major role of ABA in abiotic stress signaling, ABA signaling was reported to downregulate biotic stress signaling. Conversely recent findings provide evidence that initial activation of plant immune signaling inhibits subsequent ABA signal transduction. Stimulation of effector-triggered disease response can interfere with ABA signal transduction via modulation of internal calcium-dependent signaling pathways. This review overviews the interactions of abiotic and biotic stress signal transduction and the mechanism through which stress surveillance system operates to generate the most efficient resistant traits against various stress condition.  相似文献   

3.
When 14C-labelled abscisic acid ([14C]ABA) was supplied to isolated protoplasts of the barley leaf at pH 6, initial rates of metabolism were about five times higher in epidermal cell protoplasts than in mesophyll cell protoplasts if equal cytosolic volumes were considered. In spite of the fact that epidermal cells make up only about 35% of the total water space in barley leaves, and despite the small cytosolic volume of these cells, in intact leaves all epidermal cells would thus metabolize half as much ABA per unit time as the mesophyll cells (0–27 and 0–51 mmol h?1 m?3 leaf water). Therefore, under these conditions epidermal cells seem to be a stronger sink than mesophyll cells for ABA that arrives via the transpiration stream. However, at an apoplastic pH of 7–25, which occurs in stressed leaves, the proportion of total metabolized ABA would be much smaller in epidermal than in mesophyll cells (0–029 and 0–204 mmolh?l m?3 leaf water). Our results indicate that under conditions of slightly alkaline apoplastic pH the epidermis may serve as the main source for fast stress-dependent ABA redistribution into the guard cell apoplast. This is partly the result of ABA transport across the epidermal tonoplast, which is dependent on the apoplastic pH and possibly on the cytosolic calcium concentration. The cuticle seems to be of no particular importance in stress-induced apoplastic ABA shifts and cannot be regarded as a significant sink for high ABA concentrations under stress.  相似文献   

4.
The phytohormone abscisic acid (ABA) inhibits blue light‐induced apoplastic acidification of guard cells. The signal transduction pathway of ABA, mediating this response, was studied using ABA‐insensitive ( abi ) mutants of Arabidopsis thaliana . Apoplastic acidification was monitored with a flat tipped pH‐electrode placed on epidermal strips, in which only guard cells were viable. Blue light‐induced apoplastic acidification was reduced by vanadate and diethylstilbestrol (DES), indicating involvement of plasma membrane‐bound H+‐ATPases. In wild type epidermal strips, ABA reduced blue light‐induced acidification to 63%. The inhibition did not result from an increased cytoplasmic free Ca2+ concentration in guard cells, since factors that increase the Ca2+ concentration stimulated apoplastic acidification. Apoplastic acidification was not inhibited by ABA in abi1 and abi2 mutants. In abi1 epidermal strips ABA had no effect on the acidification rate, while it stimulated apoplastic acidification in abi2 . The ABA response in both mutants could be partially restored with protein kinase and phosphatase inhibitors. The abi1 guard cells became ABA responsive in the presence of okadaic acid, a protein phosphatase inhibitor. In abi2 guard cells the wild type ABA response was partially restored by K‐252a, a protein kinase inhibitor. Apoplastic inhibition is thus mediated through the protein phosphatases encoded by ABI1 and ABI2 . The results with protein kinase and protein phosphatase inhibitors indicate that ABI1 and ABI2 are involved in separate signal transduction pathways.  相似文献   

5.
Leaf pavement cell expansion in light depends on apoplastic acidification by a plasma membrane proton-pumping ATPase, modifying cell wall extensibility and providing the driving force for uptake of osmotically active solutes generating turgor. This paper shows that the plant hormone ABA inhibits light-induced leaf disk growth as well as the blue light-induced pavement cell growth in pea (Pisum sativum L.). In the phytochrome chromophore-deficient mutant pcd2, the effect of ABA on the blue light-induced apoplastic acidification response, which exhibits a high fluence phase via phytochrome and a low fluence phase via an unknown blue light receptor, is still present, indicating an interaction of ABA with the blue light receptor pathway. Furthermore, it is shown that ABA inhibits the blue light-induced apoplastic acidification reversibly. These results indicate that the effect of ABA on apoplastic acidification can provide a mechanism for short term, reversible adjustment of leaf growth rate to environmental change.Key Words: ABA, apoplastic acidification, blue light, epidermal pavement cell growth, leaf growth, pea (Pisum sativum L.), signal integration  相似文献   

6.
The plant hormone abscisic acid (ABA) is involved in regulating a number of major processes such as seed dormancy, seedling development, and biotic and abiotic stress responses. The function and effect of ABA on pathogens are still unclear, but the roles of ABA in seed germination and abiotic stress responses have been well characterized. Abiotic stresses elevate ABA levels and activate ABA signaling; thus, inducing a variety of responses, including the expression of stress-related genes and stomatal closure. The past decade has witnessed many significant advances in our understanding of ABA signal transduction due to application of a combination of approaches including genetics, biochemistry, electrophysiology, and chemical genetics. A number of proteins associated with the ABA signal transduction pathway such as PYR/PYL/RCAR family of START proteins, have been identified. These ABA receptors bind to ABA and positively regulate ABA signaling via inactivation of PP2C phosphatase activity, which inhibits SnRK2-type kinases by direct interaction and dephosphorylation. Additionally, SnRK2-type kinases and PP2Cs interact with one another and with other components of ABA signaling and function as positive and negative ABA regulators, respectively. In this review, we focus on ABA function to abiotic stresses and highlight each component in relation to ABA and its interactions.  相似文献   

7.
Abscisic acid in the xylem: where does it come from, where does it go to?   总被引:19,自引:0,他引:19  
Abscisic acid is a hormonal stress signal that moves in the xylem from the root to the different parts of the shoot where it regulates transpirational water loss and leaf growth. The factors that modify the intensity of the ABA signal in the xylem are of particular interest because target cells recognize concentrations. ABA(xyl), will be decreased as radial water flow through the roots is increased, assuming that radial ABA transport occurs in the symplast only. Such dilutions of the plant hormone concentration can be compensated in different ways, which help to keep the ABA-concentrations in the xylem constant: (i) apoplastic bypass flows of ABA, (ii) ABA flows between the stem parenchyma and the xylem during transport and (iii) the action of beta-D-glucosidases that release free ABA from its conjugates to the root cortex and the leaf apoplast. The significance of reflection coefficients (sigma(ABA)), permeability coefficients of membranes (P(S)(ABA)) and apoplastic barriers for ABA is discussed.  相似文献   

8.
Abscisic acid (ABA) regulates key processes relevant to seed germination, plant development, and biotic and abiotic stress responses. Abiotic stress conditions such as drought induce ABA biosynthesis initiating the signalling pathways that lead to a number of molecular and cellular responses, among which the best known are the expression of stress-related genes and stomatal closure. Stomatal closure also serves as a mechanism for pathogen defence, thereby acting as a platform for crosstalk between biotic and abiotic stress responses involving ABA action. Significant advances in our understanding of ABA signal transduction have been made with combination of approaches including genetics, biochemistry, electrophysiology and chemical genetics. Molecular components associated with the ABA signalling have been identified, and their relationship in the complex network of interactions is being dissected. We focused on the recent progress in ABA signal transduction, especially those studies related to identification of ABA receptors and downstream components that lead ABA signal to cellular response. In particular, we will describe a pathway model that starts with ABA binding to the PYR/PYL/RCAR family of receptors, followed by inactivation of 2C-type protein phosphatases and activation of SnRK2-type kinases, and eventually lead to activation of ion channels in guard cells and stomatal closure.  相似文献   

9.
The role of ABA as the primary long-distance signal produced by water-stressed roots and transported to stomata continues to be challenged. We have recently reported that expression of ABA biosynthetic genes in roots only increases in the later stage of water stress. Our results support the hypothesis that in early water stress, increased levels of ABA in xylem sap are due to leaf biosynthesis and translocation to roots and from there to xylem. If so, other xylem-borne chemicals may be the primary stress signal(s) inducing ABA biosynthesis in leaves. We found that apart from ABA, sulfate was the only xylem-borne chemical that consistently showed higher concentrations from early to later water stress. We also found increased expression of a sulfate transporter gene in roots from early water stress onwards. Moreover, using bioassays we found an interactive effect of ABA and sulfate in decreasing maize transpiration rate, as compared to ABA alone. While ABA is undoubtedly the key mediator of water stress responses such as stomatal closure, it may not be the primary signal produced by roots perceiving water stress.Key words: abscisic acid, ABA biosynthesis, corn, drought, maize, malate, pH, stomatal conductance, sulfate, Zea mays  相似文献   

10.
Abscisic acid (ABA) integrates the water status of a plant and causes stomatal closure. Physiological mechanisms remain poorly understood, however, because guard cells flanking stomata are small and contain only attomol quantities of ABA. Here, pooled extracts of dissected guard cells of Vicia faba L. were immunoassayed for ABA at sub‐fmol sensitivity. A pulse of water stress was imposed by submerging the roots in a solution of PEG. The water potentials of root and leaf declined during 20 min of water stress but recovered after stress relief. During stress, the ABA concentration in the root apoplast increased, but that in the leaf apoplast remained low. The ABA concentration in the guard‐cell apoplast increased during stress, providing evidence for intra‐leaf ABA redistribution and leaf apoplastic heterogeneity. Subsequently, the ABA concentration of the leaf apoplast increased, consistent with ABA import via the xylem. Throughout, the ABA contents of the guard‐cell apoplast, but not the guard‐cell symplast, were convincingly correlated with stomatal aperture size, identifying an external locus for ABA perception under these conditions. Apparently, ABA accumulates in the guard‐cell apoplast by evaporation from the guard‐cell wall, so the ABA signal in the xylem is amplified maximally at high transpiration rates. Thus, stomata will display apparently higher sensitivity to leaf apoplastic ABA if stomata are widely open in a relatively dry atmosphere.  相似文献   

11.
In response to water deficit, endogenous abscisic acid (ABA) accumulates in plants. This ABA serves as a signal for a multitude of processes, including regulation of gene expression. ABA accumulated in response to water deficit signals cellular as well as whole plant responses playing a role in the pattern of gene expression throughout the plant. Although the function of genes regulated by ABA during stress are currently poorly understood, a number of these genes may permit the plant to adapt to environmental stress.  相似文献   

12.
水分胁迫积累的ABA诱导抗氧化防护系统的信号级联   总被引:3,自引:0,他引:3  
水分胁迫是限制植物生长发育的主要胁迫因子之一。植物通过感受刺激,产生和传递信号、启动多种防御机制对水分胁迫做出响应和适应。脱落酸(ABA)作为一种重要的植物体内胁迫激素,参与了许多这样的反应。研究表明,ABA增强植物水分胁迫的忍耐力与ABA诱导的抗氧化剂防护系统有关;且细胞溶质Ca2 ([Ca2 ]i)、活性氧(ROS)等许多第二信使参与了ABA诱导的信号转导过程。本文就这些信号分子在水分胁迫积累的内源ABA诱导的抗氧化剂防护系统中的作用作一综述。  相似文献   

13.
The plant hormone abscisic acid (ABA) accumulates in plant tissues which experience water deficit (stress ABA). This study analysed its accumulation as a function of both synthesis and catabolism in maize tissues. By following the disappearance of the stress ABA when ABA synthesis was blocked by nordihydroguaiaretic acid (NDGA), the rate of the catabolism of stress ABA was determined. When compared with the catabolic rate of baseline (non-stress) ABA, stress ABA showed a catabolic rate >11 times higher. With such an elevated catabolic rate, it is proposed that the xanthophyll precursor pool may not be able to sustain the ABA accumulation, and such a proposition has been substantiated by further experiments where fluridone is used to limit the availability of upstream ABA precursors. When fluridone was used, stress ABA accumulation could only be sustained for a few hours, i.e. approximately 5 h for leaf and 1 h for root tissues. In detached roots, stress ABA accumulation could not be sustained even if fluridone was not used, suggesting that stress ABA accumulation in root systems requires the continuous import of ABA precursors from the shoots. Such an assumption was substantiated by the observation that defoliation or shading significantly reduced ABA accumulation in intact roots. The present study suggests that ABA catabolism is rapid enough to play an important role in the regulation of ABA accumulation.  相似文献   

14.
Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and stress tolerance. PYL/RCARs were identified an intracellular ABA receptors regulating ABA-dependent gene expression in Arabidopsis thaliana. However, their function in monocot species has not been characterized yet. Herein, it is demonstrated that PYL/RCAR orthologues in Oryza sativa function as a positive regulator of the ABA signal transduction pathway. Transgenic rice plants expressing OsPYL/RCAR5, a PYL/RCAR orthologue of rice, were found to be hypersensitive to ABA during seed germination and early seedling growth. A rice ABA signalling unit composed of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1 for ABA-dependent gene regulation was further identified, via interaction assays and a transient gene expression assay. Thus, a core signalling unit for ABA-responsive gene expression modulating seed germination and early seedling growth in rice has been unravelled. This study provides substantial contributions toward understanding the ABA signal transduction pathway in rice.  相似文献   

15.
The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.

Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  相似文献   

16.
植物经历干旱胁迫时,ABA被普遍认为是一种干旱信号而传递干旱信息。在干旱信号ABA的转导过程中,从ABA的被感知到保卫细胞发生变化引起气孔关闭以及ABA诱导的基因表达都经历了复杂的变化。本文对ABA的信号转导过程进行了综述。  相似文献   

17.
植物根系感知外界水分胁迫刺激,诱导ABA生物合成。ABA既可诱导气孔关闭或抑制气孔开放,以降低植物的蒸腾失水,又可影响植物根系发育,以抵御水分胁迫。本文就植物激素ABA及其下游信号H2O2、NO以及Ca2+等在植物生长调节方面的研究进展进行概述,以构建水分胁迫下植物生长自我调控的可能模式。  相似文献   

18.
张静  侯岁稳 《植物学报》2019,54(3):300-315
脱落酸(ABA)是植物生长发育和逆境适应过程中非常关键的植物激素。植物响应ABA信号转导过程由信号识别、转导及响应级联完成, 其中心转导途径由ABA受体RCAR/PYR/PYLs、磷酸酶PP2Cs、激酶SnRK2s、转录因子和离子通道蛋白构成。蛋白磷酸化、泛素化、类泛素化和氧化还原等翻译后修饰在ABA转导途径中起重要作用。该文综述了翻译后修饰在ABA信号转导中的作用。  相似文献   

19.
张静  侯岁稳 《植物学报》1983,54(3):300-315
脱落酸(ABA)是植物生长发育和逆境适应过程中非常关键的植物激素。植物响应ABA信号转导过程由信号识别、转导及响应级联完成, 其中心转导途径由ABA受体RCAR/PYR/PYLs、磷酸酶PP2Cs、激酶SnRK2s、转录因子和离子通道蛋白构成。蛋白磷酸化、泛素化、类泛素化和氧化还原等翻译后修饰在ABA转导途径中起重要作用。该文综述了翻译后修饰在ABA信号转导中的作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号