首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated patterns of mating call preference and mating call recognition by examining phonotaxis of female túngara frogs, Physalaemus pustulosus, in response to conspecific and heterospecific calls. There are four results: females always prefer conspecific calls; most heterospecific calls do not elicit phonotaxis; some heterospecific calls do elicit phonotaxis and thus are effective mate recognition signals; and females prefer conspecific calls to which a component of a heterospecific call has been added to a normal conspecific call. We use these data to illustrate how concepts of species recognition and sexual selection can be understood in a unitary framework by comparing the distribution of signal traits to female preference functions.  相似文献   

2.
Interspecific mating normally decreases female fitness. In many species, females avoid heterospecific males innately or by imprinting on their parents. Alternatively, adult females could learn to discriminate against heterospecific males after exposure to such males. For example, Syrian hamster (Mesocricetus auratus) females learn to discriminate between conspecific males and Turkish hamster (M. brandti) males during adulthood by exposure to males of both species. Adult females not previously exposed to Turkish hamster males will mate similarly with conspecific and heterospecific males. However, in a previous study we showed that exposure to a heterospecific male and a conspecific male for 8 days led to mating avoidance and aggression towards the heterospecific male. Here we conducted two experiments to investigate how much exposure to the heterospecific male was required for females to avoid mating with the heterospecific male (Experiment 1) and how long that avoidance lasted in the absence of continuous exposure to heterospecific stimuli (Experiment 2). Fast and durable learning would indicate the evolution of an efficient avoidance response. In Experiment 1, females were exposed to a heterospecific male for 1, 4 h, 4 or 8 days and then paired with that male. We found more avoidance of interspecific mating after 4 or 8 days of exposure than after 1 or 4 h of exposure. In Experiment 2, females were exposed to a heterospecific male for 8 days and then paired with that male either 10 min later or 8 days later. We found that after an 8-day delay females were highly sexually receptive to the heterospecific male. Additionally, a comparison between the current experiments and a previous study indicates that female Syrian hamsters do not require concurrent exposure to a conspecific male and a heterospecific male to learn to avoid interspecific mating; exposure to a heterospecific male is sufficient.  相似文献   

3.
Female mate choice is fundamental to sexual selection, and determining molecular underpinnings of female preference variation is important for understanding mating character evolution. Previously it was shown that whole‐brain expression of a synaptic plasticity marker, neuroserpin, positively correlates with mating bias in the female choice poeciliid, Xiphophorus nigrensis, when exposed to conspecific courting males, whereas this relationship is reversed in Gambusia affinis, a mate coercive poeciliid with no courting males. Here we explore whether species‐level differences in female behavioral and brain molecular responses represent ‘canalized’ or ‘plastic’ traits. We expose female G. affinis to conspecific males and females, as well as coercive and courting male Poecilia latipinna, for preference assays followed by whole‐brain gene expression analyses of neuroserpin, egr‐1 and early B. We find positive correlations between gene expression and female preference strength during exposure to courting heterospecific males, but a reversed pattern following exposure to coercive heterospecific males. This suggests that the neuromolecular processes associated with female preference behavior are plastic and responsive to different male phenotypes (courting or coercive) rather than a canalized response linked to mating system. Further, we propose that female behavioral plasticity may involve learning because female association patterns shifted with experience. Compared to younger females, we found larger, more experienced females spend less time near coercive males but associate more with males in the presence of courters. We thus suggest a conserved learning‐based neuromolecular process underlying the diversity of female mate preference across the mate choice and coercion‐driven mating systems.  相似文献   

4.
Aedes (Stegomyia) albopictus and Aedes (Stegomyia) flavopictus are related species that have overlapping distributions from southern to central Japan. To understand how they interact, we studied reproductive interference between them, particularly focusing on the body size difference between the mating pair. Here, we examined the effects of conspecific, heterospecific and double mating (i.e. heterospecific mating followed by conspecific mating) on copulation duration, egg production and hatchability of eggs using mosquitoes that varied in body size. Females mated only with heterospecific males produced few viable eggs, indicating that post‐mating isolation is almost complete. When mated with heterospecific males before conspecific mating, the production of viable eggs was lower than when mated only with conspecific males, revealing the occurrence of reproductive interference. The degree of reproductive interference was larger in Ae. flavopictus than in Ae. albopictus when the female size was small but did not differ between them when the female size was large. Aedes albopictus females appear to be able to distinguish Ae. flavopictus males from conspecific males and larger females are more successful in the rejection of heterospecific males. On the other hand, Ae. flavopictus were not able to discriminate between conspecific and heterospecific males.  相似文献   

5.
If a female mates with a male of a closely related species, her fitness is likely to decline. Consequently, females may develop behavioral mechanisms to avoid mating with heterospecific males. In some species, one such mechanism is for adult females to learn to discriminate against heterospecific males after exposure to such males. We have previously shown that adult, female Syrian hamsters (Mesocricetus auratus) learn to discriminate against male Turkish hamsters (Mesocricetus brandti) after exposure to a single heterospecific male during 8 days across a wire-mesh barrier. Here we repeated that experiment but this time we exposed female Turkish hamsters to a male Syrian hamster for 8 days and then measured sexual and aggressive behaviors towards that heterospecific male and towards a conspecific male. In contrast to female Syrian hamsters, female Turkish hamsters did not differ in their latency to go into lordosis or in any measure of aggression towards either type of male. Female Turkish hamsters spent less time in lordosis with the heterospecific male, but the percentage of trials in which females copulated with conspecific and heterospecific males did not differ. When comparing females from both species that had been exposed to a heterospecific male for 8days, female Syrian hamsters copulated less and were more aggressive towards the heterospecific male compared to the behavior of female Turkish hamsters. We discuss how this asymmetric response between females of the two species may be due to the much larger geographical range of Turkish hamsters compared to Syrian hamsters.  相似文献   

6.
Reproductive isolation restricts genetic exchange between species. Various pre- and post-mating barriers, such as behavior, physiology and gametic incompatibility, have been shown to evolve in sympatry. In certain scenarios, isolation can be asymmetrical, where species differentially prefer conspecifics. We examined sexual isolation via conspecific mate preference between Gambusia affinis and G. geiseri in both sexes. To investigate male contribution to sexual isolation, we compared the number of mating attempts (gonopodial thrusts) directed at either a conspecific or a heterospecific female, in both species. We also examined sperm priming and expenditure in males in the presence of conspecific or heterospecific females. We then measured female preference for either a conspecific or heterospecific male, in both species. We found that males of both species preferred to mate with conspecific females, but showed no difference in sperm production or expenditure between conspecific and heterospecific females. Females of both species did not prefer conspecific over heterospecific males. Our results suggest that sexual isolation might be mediated by male mate choice in this system and not female choice, suggesting that there is asymmetrical reproductive isolation between the sexes in G. affinis and G. geiseri, but symmetrical species isolation.  相似文献   

7.
Sexual conflict is a pervasive evolutionary force that can reduce female fitness. Experimental evolution studies in the laboratory might overestimate the importance of sexual conflict because the ecological conditions in such settings typically include only a single species. Here, we experimentally manipulated conspecific male density (high or low) and species composition (sympatric or allopatric) to investigate how ecological conditions affect female survival in a sexually dimorphic insect, the banded demoiselle (Calopteryx splendens). Female survival was strongly influenced by an interaction between male density and species composition. Specifically, at low conspecific male density, female survival increased in the presence of heterospecific males (C. virgo). Behavioral mating experiments showed that interspecific interference competition reduced conspecific male mating success with large females. These findings suggest that reproductive interference competition between con‐ and heterospecific males might indirectly facilitate female survival by reducing mating harassment from conspecific males. Hence, interspecific competitors can show contrasting effects on the two sexes thereby influencing sexual conflict dynamics. Our results call for incorporation of more ecological realism in sexual conflict research, particularly how local community context and reproductive interference competition between heterospecific males can affect female fitness.  相似文献   

8.
The presence of a predator can result in the alteration, loss or reversal of a mating preference. Under predation risk, females often change their initial preference for conspicuous males, favouring less flashy males to reduce the risk of being detected by predators. Previous studies on predator‐induced plasticity in mate preferences have given females a choice between more and less conspicuous conspecific males. However, in species that naturally hybridize, it is also possible that females might choose an inconspicuous heterospecific male over a conspicuous conspecific male under predation risk. Our study addresses this question using the green swordtail (Xiphophorus helleri) and the southern platyfish (Xiphophorus maculatus), which are sympatric in the wild. We hypothesized that X. helleri females would prefer the sworded conspecific males in the absence of a predator but favour the less conspicuous, swordless, heterospecific males in the presence of a predator. Contrary to our expectation, females associated more with the heterospecific male than the conspecific male in the control (no predator) treatment, and they were non‐choosy in the predator treatment. This might reflect that females were attracted to the novel male phenotype when there was no risk of predation but became more neophobic after predator exposure. Regardless of the underlying mechanism, our results suggest that predation pressure may affect female preferences for conspecific versus heterospecific males. We also found striking within‐population, between‐individual variation in behavioural plasticity: females differed in the strength and direction of their preferences, as well as in the extent to which they altered their preferences in response to changes in perceived predation risk. Such variation in female preferences for heterospecific males could potentially lead to temporal and spatial variation in hybridization rates in the wild.  相似文献   

9.
Mimicry is a widespread phenomenon. Vertebrate visual mimicry often operates in an intraspecific sexual context, with some males resembling conspecific females. Pied flycatcher (Ficedula hypoleuca) dorsal plumage varies from the ancestral black to female‐like brown. Experimental studies have shown that conspecific and heterospecific (collared flycatcher, F. albicollis) individuals of both sexes respond, at least initially, to brown individuals as if they were female. We quantified the perceptual and biochemical differences between brown feathers and found that brown pied flycatcher males are indistinguishable from heterospecific, but not from conspecific, females in both aspects. To our knowledge, this is the first evidence of a visual mimetic signalling system in a sexual context where the model is heterospecific to the mimic. By only mimicking heterospecific females, brown pied flycatcher males can establish territories next to the more dominant collared flycatcher in sympatry, suffer less aggression by darker conspecifics in allopatry and preserve within‐species sexual recognition throughout the breeding range. A closer look at the evolutionary history and ecology of these two species illustrates how such a mimetic system can evolve. Although likely rare, this phenomenon might not be unique to Ficedula flycatchers.  相似文献   

10.
When species are in intermediate stages of divergence, complicated patterns of reproductive isolation can arise among males and females of the incipient species. The Chrysoperla carnea group of green lacewings (Neuroptera: Chrysopidae) has recently experienced rapid speciation. They possess sexually monomorphic mating signals that were assumed to be important in mate recognition. Our objective was to compare patterns of reproductive isolation among five European species within the species complex as well as sex differences in mating strategies that contribute to those patterns. The species were in fact reproductively isolated based on mating signals. In addition, different species showed different degrees of responsiveness to conspecific signals, and those species that responded more frequently to conspecific signals were less discriminating against heterospecific signals. This suggests differences in mating strategies among species that may be related to population densities and heterospecific encounter rates. Sexual dimorphism in mating preference was apparent only in C. agilis , whose males were more responsive to all signals and less discriminating against heterospecific signals compared to females. Thus high variance in male quality may be characteristic of C. agilis , but not the remaining four species, whose male versus female mating strategies were similar.  相似文献   

11.
When making mating decisions, individuals may rely on multiple cues from either the same or multiple sensory modalities. Although the use of visual cues in sexual selection is well studied, fewer studies have examined the role of chemical cues in mate choice. In addition, few studies have examined how visual and/or chemical cues affect male mating decisions. Male mate choice is important in systems where males must avoid mating with heterospecific females, as is found in a mating complex of Poecilia. Male sailfin mollies, Poecilia latipinna, are sexually parasitized by gynogenetic Amazon mollies, P. formosa. Little is known about the mechanism by which male sailfin mollies base their mating decisions. Here we tested the hypothesis that male sailfin mollies from an allopatric and a sympatric population with Amazon mollies use multiple cues to distinguish between conspecific and heterospecific females. We found that male sailfin mollies recognized the chemical cues of conspecific females, but we found no support for the hypothesis that chemical cues are by themselves sufficient for species discrimination. Lack of discrimination based on chemical cues alone may be due to the close evolutionary history between P. latipinna and P. formosa. Males from populations sympatric with Amazon mollies did not differentially associate with females of either of the two species when given access to both visual and chemical cues of the females, yet males from the allopatric population did associate more with conspecific females than with heterospecific females in the presence of both chemical and visual cues. The lack of discrimination by males from the sympatric population between conspecific and heterospecific females based on both chemical and visual cues suggests that these males require more complex combinations of cues to distinguish species, possibly due to the close relatedness of these species.  相似文献   

12.
Mixed populations of the twospotted spider mite (TSM),Tetranychus urticae (Koch), and the Banks grass mite (BGM),Oligonychus pratensis (Banks), occur on corn and sorghum plants in late summer in the Great Plains. Interspecific matings between these arrhenotokous species occur readily in the laboratory but yield no female offspring. The effect of interspecific mating on female: male sex ratios was measured by examining the F1 progeny of females that mated with both heterospecific and conspecific males in no-choice situations. TSM females that mated first with BGM males and then with TSM males produced a smaller percentage of female offspring than TSM females that mated only with TSM males (43.1±5.8 and 78.9±2.8% females, respectively). Similarly, BGM females mated with heterospecific males and then with conspecific males produced fewer female offspring than females mated only with BGM males (55.7±5.2 and 77.5±2.5%, respectively). Lower female: male sex ratios were produced also by BGM females that mated with TSM males after first mating with conspecifics (62.4±3.4%). In mixed populations containing males of both species, females also produced lower female: male sex ratios, but these ratios were not as low as expected based on mating propensities and progeny sex ratios observed in no-choice tests. These data suggest that interspecific mating may substantially reduce female fitness in both mite species by reducing the output of female offspring, but in mixed populations this effect is mitigated by unidentified behavioral mechanisms.  相似文献   

13.
Species recognition and mate preference both influence mate choice but can be in conflict with each other. In such cases the relative importance of the two functions depends on the costs of mating with heterospecifics and the frequency of such interactions. We tested whether male flat lizards (Platysaurus broadleyi) are able to discriminate between conspecific females and females of its allopatric sister species P. capensis. Given a simultaneous choice between equally sized females of both species, males courted conspecific females in 85% of trials. We then tested whether mate preference for large female body size can override species recognition. When offered a choice between a larger heterospecific female and a smaller conspecific, males showed no preference for conspecifics and courted larger heterospecific females in 58% of trials. Comparison of the two sets of trials showed a significant effect of female body size on male mate preference, supporting the hypothesis that mate quality can override species recognition.Communicated by K. Kotrschal  相似文献   

14.
Interactions with heterospecifics can promote the evolution of divergent mating behaviours between populations that do and do not occur with heterospecifics. This process--reproductive character displacement--potentially results from selection to minimize the risk of mating with heterospecifics. We sought to determine whether heterospecific interactions lead to divergence of female preferences for aspects of conspecific male signals. We used artificial neural network models to simulate a mate recognition system in which females co-occur with different heterospecifics in different populations. Populations that evolved conspecific recognition in the presence of different heterospecifics varied in their preferences for aspects of conspecific male signals. When we tested networks for their preferences of conspecific versus heterospecific signals, however, we found that networks from allopatric populations were usually able to select against heterospecifics. We suggest that female preferences for aspects of conspecific male signals can result in a concomitant reduction in the likelihood that females will mate with heterospecifics. Consequently, even females in allopatry may discriminate against heterospecific mates depending on the nature of their preferences for conspecifics. Such a pattern could potentially explain cases where reproductive character displacement is expected, but not observed.  相似文献   

15.
The social interactions between Apodemus agrarius and A. flavicollis, and their behavioral responses to conspecific and heterospecific odors, were studied in male–male and female–female interspecific dyadic encounters, and an attraction–avoidance test was used in order to clarify the behavioral mechanisms which control their relationships in wild populations. The experiments were carried out at the beginning and at the end of the breeding season—in spring and in autumn. In spring the aggressiveness was higher than in autumn. Males of both species showed attraction to conspecific odors from the opposite sex, while the females were indifferent. In autumn both males and females displayed attraction to conspecific odors from the same sex. However, mice of both species showed avoidance to heterospecific odors from the same and the opposite sex in spring, and indifference to heterospecific odors from the same and the opposite sex in autumn. Based on these findings, it could be assumed that the patterns of social interactions and responses to conspecific and heterospecific odors undergo seasonal changes in their life cycle. Probably the avoidance response to heterospecific odors could serve as a spacing mechanism to avoid aggressive encounters between A. agrarius and A. flavicollis in syntopic habitats during the breeding period.  相似文献   

16.
Drosophila melanogaster are found in sympatry with Drosophila simulans, and matings between the species produce nonfertile hybrid offspring at low frequency. Evolutionary theory predicts that females choose mates, so males should alter their behaviour in response to female cues. We show that D. melanogaster males quickly decrease courtship towards D. simulans females. Courtship levels are reduced within 5 min of exposure to a heterospecific female, and overall courtship is significantly lower than courtship towards conspecific females. To understand changes at the molecular level during mate choice, we performed microarray analysis on D. melanogaster males that courted heterospecific D. simulans females and found nine genes have altered expression compared with controls. In contrast, males that court conspecific females alter expression of at least 35 loci. The changes elicited by conspecific courtship likely modulate nervous system function to reinforce positive conspecific signals and dampen the response to heterospecific signals.  相似文献   

17.
Interspecific mating between the two-spotted spider mite,Tetranychus urticae Koch, and the Banks grass mite,Oligonychus pratensis (Banks), was documented using laboratory populations. The incidence of mating betweenT. urticae males andO. pratensis females was 26.0%, while that for the reciprocal mating was 18.8%. The incidence of mating was affected by both male and female species. Such matings may have several important ecological consequences. Interspecific matings resulted in all-male progenies. Thus, progeny sex ratios may be distorted by misdirected mating behavior. In addition, heterospecific mating resulted in lower fecundity than conspecific matings in the two-spotted spider mite, although not in the Banks grass mite. Aerial dispersal behavior of the two-spotted spider mite was also affected. Under crowded conditions and deteriorating resource quality, female mites exhibit an aerial dispersal posture that helps them to become airborne, and allows them to disperse long distances. Forty-two percent ofT. urticae females that mated with conspecific males exhibited this dispersal behavior, compared to only 3.6% for virgin females. The incidence of aerial dispersal behavior for females that mated with heterospecific males was intermediate (27.3%). The effects of these behavioral alterations on male and female fitness may depend on the population structure and resource distribution.  相似文献   

18.
Conspecific sperm precedence (CSP) has been identified as an important post-copulatory, pre-zygotic mechanism that can act to reduce gene flow between populations. The evolution of CSP is thought to have arisen as a by-product of male and female coevolution in response to intraspecific post-copulatory sexual selection. However, little is known about the mechanisms that generate CSP. When Callosobruchus subinnotatus females copulate with both C. subinnotatus and Callosobruchus maculatus males, regardless of mating order, the majority of eggs are fertilized by conspecific sperm. The low number of heterospecific fertilizations does not result from general differences in the viability of sperm in the female reproductive tract, as heterospecific sperm fertilized equivalent numbers of eggs as conspecific sperm in the absence of sperm competition. Instead, CSP results from disadvantages to heterospecific sperm that are manifest only when in competition with conspecific sperm. CSP in C. subinnotatus appears to result from two, not mutually exclusive, mechanisms. First, conspecific sperm are better able to displace heterospecific sperm from female storage. Second, conspecific sperm achieve disproportionately higher numbers of fertilizations relative to their proportional representation in the fertilization set. Thus, we provide evidence of differential sperm use from the female spermatheca.  相似文献   

19.
Co‐occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species‐specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species‐specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C. virgo) through direct premating interactions. These two species co‐occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C. virgo males have fully melanized wings, male C. splendens wings are partly melanized. We show that C. splendens females in sympatry with C. virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C. splendens females with experimentally induced experience with C. virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co‐occurrence with C. virgo therefore causes females to prefer conspecific male traits that are more species specific, contributing to population divergence and geographic variation in female mate preferences.  相似文献   

20.
Reinforcement occurs when hybridization between closely related lineages produces low‐fitness offspring, prompting selection for elevated reproductive isolation specifically in areas of sympatry. Both premating and postmating prezygotic behaviors have been shown to be the target of reinforcing selection, but it remains unclear whether remating behaviors experience reinforcement, although they can also influence offspring identity and limit formation of hybrids. Here, we evaluated evidence for reinforcing selection on remating behaviors in Drosophila pseudoobscura, by comparing remating traits in females from populations historically allopatric and sympatric with Drosophila persimilis. We found that the propensity to remate was not higher in sympatric females, compared to allopatric females, regardless of whether the first mated male was heterospecific or conspecific. Moreover, remating behavior did not contribute to interspecific reproductive isolation among any population; that is, females showed no higher propensity to remate following a heterospecific first mating than following a conspecific first mating. Instead, we found that females are less likely to remate after initial matings with unfamiliar males, regardless of species identity. This is consistent with one scenario of postmating sexual conflict in which females are poorly defended against postcopulatory manipulation by males with whom they have not coevolved. Our results are generally inconsistent with reinforcement on remating traits and suggest that this behavior might be more strongly shaped by the consequences of local antagonistic male–female interactions than interactions with heterospecifics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号