首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six human differentiation antigens (EE24.6, EG9.11, EG14.1, EI16.1, EK8.1, EK17.1) have been defined using monoclonal antibodies obtained from mice immunized with embryonic kidney cells. Their histologic distribution was determined on frozen sections of embryonic, fetal, and adult human kidneys by immunofluorescence assay. EE24.6, an ureteral bud marker, was detected only on the germ layer of mature kidney urothelium. EG9.11 and EG14.1 were detected on the S-shaped bodies and also on the adult proximal convoluted tubule for the former and the glomerular basement membrane for the latter. EI16.1, a marker of condensed mesenchyme, was detected only on epithelial cells of adult proximal convoluted tubule. EK8.1 was found in the mesangium, connective tissue, and with particularly dense labeling in the basement membranes. This labeling pattern was present throughout renal organogenesis. EK17.1 recognized both cell and plasma human fibronectins. Staining for all antibodies was nearly identical in mesonephros and metanephros. These results demonstate that some antigens follow their embryonic destiny. They indicate an antigenic similarity between the mesonephros and the metanephros and, therefore, a very early appearance of these antigens. During differentiation, these antigens concentrate on more defined structures, and staining became increased with an increased degree of differentiation.  相似文献   

2.
Nine human differentiation antigens have been defined by monoclonal antibodies (M. Abs) developed from mice immunized with embryonic kidney cells (mesonephros or metanephros of 7 week-developmental ages). Their spatial and temporal distributions during human kidney organization were previously studied [3]. In this paper we have attempted to follow by immunofluorescence their phylogenic location, from fish to mammals. Six of them recognized the same structures as in humans: proximal convoluted tubules (PCT) (EG9.11, EG19.6, E116.1), glomerular basement membrane (GBM) (EG14.1) and extracellular matrix (EK8.1, EK17.1). However, staining was limited to certain mammals. EK17.1 has been characterized as an anti-fibronectin. These antibodies revealed the same histological structures in the human mesonephros and metanephros. The three other antibodies revealed epitopes appearing earlier in evolution and whose histological distribution varied according to species. These antibodies stained different structures in the mesonephros and metanephros. Thus, the staining particularities observed during human renal ontogenesis were found again in the phylogenetical study.  相似文献   

3.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

4.
In this study we examined if an association exists between expression of an alternatively spliced "embryonic" fibronectin isoform EIIIA (Fn-EIIIA) and alpha-smooth muscle actin (alpha-SMA) in the maturing and adult rat kidney and in two unrelated models of glomerular disease, passive accelerated anti-glomerular basement membrane (GBM) nephritis and Habu venom (HV)-induced proliferative glomerulonephritis, using immunohistochemistry and in situ hybridization. Fn-EIIIA and alpha-SMA proteins were abundantly expressed in mesangium and in periglomerular and peritubular interstitium of 20-day embryonic and 7-day (D-7) postnatal kidneys in regions of tubule and glomerular development. Staining was markedly reduced in these structures in maturing juvenile (D-14) kidney and was largely lost in adult kidney. Expression of Fn-EIIIA and alpha-SMA was reinitiated in the mesangium and the periglomerular and peritubular interstitium in both models and was also observed in glomerular crescents in anti-GBM nephritis. Increased expression of Fn-EIIIA mRNA by in situ hybridization corresponded to the localization of protein staining. Dual labeling experiments verified co-localization of Fn-EIIIA and alpha-SMA, showing a strong correlation of staining between location and staining intensity during kidney development, maturation, and disease. Expression of EIIIA mRNA corresponded to protein expression in developing and diseased kidneys and was lost in adult kidney. These studies show a recapitulation of the co-expression of Fn-EIIIA and alpha-SMA in anti-GBM disease and suggest a functional link for these two proteins.  相似文献   

5.
Cellular origin of fibronectin in interspecies hybrid kidneys   总被引:1,自引:1,他引:0       下载免费PDF全文
The cellular origin of fibronectin in the kidney was studied in three experimental models. Immunohistochemical techniques that use cross-reacting or species-specific antibodies against mouse or chicken fibronectin were employed. In the first model studied, initially avascular mouse kidneys cultured on avian chorioallantoic membranes differentiate into epithelial kidney tubules and become vascularized by chorioallantoic vessels. Subsequently, hybrid glomeruli composed of mouse podocytes and avian endothelial-mesangial cells form. In immunohistochemical studies, cross-reacting antibodies to fibronectin stained vascular walls, tubular basement membranes, interstitium, and glomeruli of mouse kidney grafts. The species-specific antibodies reacting only with mouse fibronectin stained interstitial areas and tubular basement membranes, but showed no reaction with hybrid glomeruli and avian vascular walls. In contrast, species-specific antibodies against chicken fibronectin stained both the interstitial areas and the vascular walls as well as the endothelial-mesangial areas of the hybrid glomeruli, but did not stain the mouse-derived epithelial structures of the kidneys. In the second model, embryonic kidneys cultured under avascular conditions in vitro develop glomerular tufts, which are devoid of endothelial cells. These explants showed fluorescence staining for fibronectin only in tubular basement membranes and in interstitium. The avascular, purely epithelial glomerular bodies remained unstained. Finally, in outgrowths of separated embryonic glomeruli, the cross-reacting fibronectin antibodies revealed two populations of cells: one devoid of fibronectin and another expressing fibronectin in strong fibrillar and granular patterns. These results favor the idea that the main endogenous cellular sources for fibronectin in the embryonic kidney are the interstitial and vascular cells. All experiments presented here suggest that fibronectin is not synthesized by glomerular epithelial cells in vivo.  相似文献   

6.
We studied the extracellular localization of factor VIII-related antigen (VIIIR: Ag) in cultures of human endothelial cells. The cells deposited both VIIIR: Ag and fibronectin already during their initial adhesion phase and in immunofluorescence microscopy of spread cells extracellular VIIIR: Ag was localized to fibrils coaligning with pericellular fibronectin. When human fibroblasts, which do not synthesize VIIIR: Ag, were cultured in endothelial cell post-culture medium, a fibrillar matrix localization of VIIIR: Ag was seen, comparable to that of endothelial cell cultures. A fibrillar VIIIR: Ag-specific staining was also seen in cell-free pericellular matrices of endothelial cells, produced by deoxycholate treatment. In immunoelectron microscopy, VIIIR: Ag was seen in fibrillar extracellular material between and underneath the cells and in cell-free matrices of endothelial cells as well.In immunofluorescence microscopy of cell-free matrices, VIIIR: Ag codistributed with both fibronectin and type III procollagen. Digestion of the matrices with purified bacterial collagenase abolished the type III procollagen-specific fluorescence, whereas the fibrillar VIIIR: Ag-specific staining, codistributing with fibronectin, remained unaffected. In electrophoresis of isolated, metabolically labelled endothelial cell matrices, major polypeptides with Mr 220–240; 180; 160; 80 and 45 kD and some minor polypeptides were resolved. In addition, immunoblotting revealed fibronectin, VIIIR: Ag and type III procollagen as components of cell-free matrices of endothelial cells. Direct overlay of iodinated cellular fibronectin on electrophoretically separated polypeptides of cultured endothelial cells, transferred to nitrocellulose, suggested that fibronectin binds directly to VIIIR: Ag. Our results indicate that VIIIR: Ag produced by human endothelial cells is a component of the pericellular matrix and is not bound to collagen but may directly associate with fibronectin.  相似文献   

7.
The production of monoclonal antibodies against human embryonic renal cells allowed to display on the adult human kidney some antigens typical of certain structures or tissues: the proximal convoluted tubule for EG 9-11 and EG 19-6 monoclonal antibodies, the glomerular basement membrane for EG 14-1, the urothelium for EE 24-6, the connective tissue for EK 8-1 and EK 17-1 and probably the capsular and tubular basement membranes for EK 8-1. Simultaneously, we could follow the spatial and temporal repartition of the antigens during the renal development. One of them (EI 16-1) seemed to disappear in the adult and might correspond to a foetal type-antigen.  相似文献   

8.
Five independent hybrids producing monoclonal antibodies to human plasma fibronectin have been obtained by fusing P3/X63-Ag8 myeloma cells with immune mouse splenocytes. The specificity of these monoclonal antibodies (MABs) for fibronectin was demonstrated by three independent tests: binding to the purified soluble molecule, immunofluorescence staining of insoluble extracellular matrices produced by endothelial cells in vitro, immunostaining of fibronectin tryptic peptides after separation on SDS-PAGE and transfer to nitrocellulose sheets. Two antibodies (MAB 29 and 52) recognized selectively human fibronectin while the others (MAB 5, 30 and 59) reacted also with plasma fibronectin from calf, hamster and chicken. Four distinct epitopes were recognized by the MABs studied. MAB 5, 30, 52 and 59 reacted with distinct antigenic sites, while MAB 29 and 52 bind to the same site. Antigenic fragments were identified by immunostaining of fibronectin tryptic peptides. MAB 5 reacted with a collagen binding fragment with a molecular weight of 120 K. In addition, each of the MAB 29, 30, 52 and 59 reacted with peptides with a molecular weight of 40 K that bind to gelatin. Since these antibodies do not inhibit fibronectin-collagen interaction, it is concluded that their corresponding epitopes are clustered in a region close, but not coincident, to the collagen binding site of fibronectin.  相似文献   

9.
The migration of capillaries into mouse embryonic kidneys grafted on quail chorioallantoic membrane (CAM) was analyzed by two monoclonal antibodies against quail endothelial and haematopoietic cells. As shown by immunohistochemistry, the quail chorioallantoic vessels invaded the kidney explant. Initially, the capillaries were detected in the interstitial stroma and, soon thereafter, tightly adjacent to the branches of the ureteric bud. The induced mesenchymal cell condensates, the prospective nephric vesicles, were avascular, but when the early S-shaped body was formed, the capillaries invaded its lower crevice. Finally chimeric glomeruli consisting of mouse podocytes and quail endothelial cells, were formed and, contemporarily, the capillaries ceased to migrate. Within the endothelial-mesangial area of the chimeric glomeruli, all cells expressed the quail-type nuclear structure and were stained by the quail endothelial-specific antibodies. The pattern of migrating capillaries was compared to the distribution of the extracellular matrix (ECM) molecules by double staining with polyclonal antibodies against laminin or fibronectin, and monoclonal quail endothelial-specific antibodies. Initially, the capillaries migrated in a fibronectin-rich matrix, devoid of laminin, but when the epithelial kidney tubules formed, some capillaries attached to the newly formed epithelial basement membrane. At no stage were the capillaries seen to penetrate the epithelial basement membrane. The orderly branching of the ureteric bud, followed by the formation of nephrons and the shift in the ECM, might create pathways for an oriented capillary migration. The fibronectin-rich areas could be a scaffold for the capillary migration, and the attachment to the basement membranes a means for their cessation.  相似文献   

10.
Summary Fibroblasts from rat, mouse and chick embryos cultured on poly-lysine/fibronectin- or poly-lysine/laminin-coated dishes were stained with antibodies directed to extracellular matrix molecules. The staining showed that cells had migrated during culture and deposited extracellular matrix components along their migration trails. Depending on the antigen, the staining of the matrix revealed fibrils, spots or a diffuse smear along the migration pathways. The major matrix components were fibronectin and heparan sulfate proteoglycan; however, laminin nidogen, tenascin, glia-derived nexin (GDN) and chondroitin-4-sulfate proteoglycan were also found. The migration trails were also detectable by scanning electron microscopy. Here, the fibrils were the prominent structures. The deposition of matrix was independent from the substratum: fibronectin was deposited on laminin, plain poly-lysine, basal lamina and even on fibronectin. Functional assays using anti-fibronectin or an antiserum to embryonic pigment epithelium basement membrane disturbed the formation of matrix fibrils, but did not inhibit cell attachment and translocation. Likewise, heparin in the culture medium only partially inhibited cell migration, despite the fact that it disturbed the formation of proper matrix fibrils. Our results suggest that the deposition of extracellular matrix by cells may not be mandatory for attachment and translocation. However, the deposition of matrix along defined trails might be important for the pathfinding of cells or nerve fibers that appear later in development.  相似文献   

11.
Normal human diploid fibroblasts exhibit a limited lifespan in vitro and are used as a model to study in vivo aging. Monoclonal antibodies were generated against partially purified surface membranes from human diploid fibroblasts at the end of their lifespan (senescent). Three hybridomas were isolated that secreted antibodies reacting to cellular determinants expressed specifically on senescent human fibroblasts of different origin, including neonatal foreskin, embryonic lung, and adult skin punch biopsy, but not expressed on matched young cells. The antibodies did not bind to immortal human cells and normal young cells made reversibly nondividing, indicating the antigens are not expressed in cells that are not senescent. The antibodies identified senescent cells in a mixed cell population and expression of the senescent cell antigens correlated strongly with the cells inability to synthesize DNA at the onset of senescence. The antigens appeared to be cell surface or extracellular matrix associated, and the epitopes were destroyed by mild trypsin treatment. Western analysis indicated all three antibodies reacted with fibronectin. Though the antigenic determinants on the fibronectin molecule were not accessible in the intact young cell, the epitopes were present in fibronectin extracted from both senescent and young cells, as well as purified human plasma fibronectin. These antibodies and the senescent specific expression of the antigens provide powerful tools to investigate the mechanisms leading to in vitro senescence. This may enable us to investigate directly the relationship between cellular aging and aging of the individual.  相似文献   

12.
Extracellular matrix of lymphoid tissues in the chick   总被引:2,自引:0,他引:2  
We describe the immunohistochemical distribution of components of the extracellular matrix of the chick lymphoid system. In the thymus, basement membranes of epithelial cells bordering the lobules were intensely stained by laminin antibodies; fibronectin antibodies labeled the capsule and the septal matrix, and similar reactivity was seen with tropoelastin and gp 115 antibodies. No positivity was detected with any of the antibodies within the cortical parenchymal cells. Laminin was not detected in the medullary parenchyma, whereas fibronectin was present as coarse fibers. Tropoelastin and gp 115 appeared as a finer and more diffuse meshwork. In the bursa, laminin antibodies outlined the epithelial cells separating the cortex from the medulla. Fibronectin, tropoelastin, and gp 115 antibody stained the interfollicular septa and the cortical matrix, although to a different extent. Laminin was also detected in association with the interfollicular epithelium (IFE) basement membrane, whereas no staining was found underneath the follicle-associated epithelium (FAE). FAE cells not only lack a proper basement membrane but are also not separated from medullary lymphocytes by any of the other extracellular matrix components were investigated. Consequently, medullary lymphocytes are not sequestered, and can come easily into contact with antigens present in the intestinal lumen. All four antibodies stained the spleen capsule and spleen blood vessels, tropoelastin and gp 115 antibodies giving the strongest reactivity. A fine trabecular staining pattern was detected with gp 115 antibodies in the white pulp.  相似文献   

13.
We have localized transforming growth factor-beta (TGF-beta) in many cells and tissues with immunohistochemical methods, using two polyclonal antisera raised to different synthetic preparations of a peptide corresponding to the amino-terminal 30 amino acids of TGF-beta 1. These two antibodies give distinct staining patterns; the staining by anti-CC(1-30) is intracellular. This differential staining pattern is consistently observed in several systems, including cultured tumor cells; mouse embryonic, neonatal, and adult tissues; bovine fibropapillomas; and human colon carcinomas. The extracellular staining by anti-CC(1-30) partially resembles that seen with an antibody to fibronectin, suggesting that extracellular TGF-beta may be bound to matrix proteins. The intracellular staining by anti-LC(1-30) is similar to that seen with two other antibodies raised to peptides corresponding to either amino acids 266-278 of the TGF-beta 1 precursor sequence or to amino acids 50-75 of mature TGF-beta 1, suggesting that anti-LC(1-30) stains sites of TGF-beta synthesis. Results from RIA and ELISAs indicate that anti-LC(1-30) and anti-CC(1-30) recognize different epitopes of this peptide and of TGF-beta 1 itself.  相似文献   

14.
Fibrin-enhanced endothelial cell organization   总被引:12,自引:0,他引:12  
We examined the synthesis of extracellular matrix macromolecules by human microvascular endothelial cells isolated from the dermis of neonatal (foreskin) and adult (abdominal) skin. Electron microscopy showed that both cell types produced an extracellular matrix that was strictly localized to the subendothelial space. The subendothelial matrices were initially deposited as a single discontinuous layer of filamentous, electron-dense material that progressively became multilayered. Biosynthetic studies indicated that 2-4% of the newly synthesized protein was deposited in the subendothelial matrices by both cell types. Approximately 15-20% of the radiolabeled protein was secreted into the culture medium, and the remainder was confined to the cellular compartment. Biochemical and immunochemical analyses demonstrated the extracellular secretion of type IV collagen, laminin, fibronectin, and thrombospondin by the newborn and adult cells. Whereas type IV collagen was the predominant constituent of the matrix, fibronectin was secreted into the medium, with only small amounts being deposited in the matrix. Thrombospondin was a major constituent of the matrix produced by the newborn foreskin cells but was virtually absent in the matrix elaborated by the adult cells. However, both cell types did release comparable amounts of thrombospondin into their medium. Immunoperoxidase staining for type IV collagen revealed a fibrillar network in the subendothelial matrices produced by both adult and neonatal cells. In contrast, thrombospondin, which was detected only in the matrix of newborn cells, exhibited a spotty and granular staining pattern. The results indicate that the extracellular matrices synthesized by cultured human microvascular endothelial cells isolated from anatomically distinct sites and different stages of development and age are similar in ultrastructure but differ in their macromolecular composition.  相似文献   

15.
Gicerin, a cell-adhesion molecule belonging to the immunoglobulin superfamily, has both homophilic and heterophilic binding activities to neurite outgrowth factor, an extracellular matrix molecule in the laminin family. Gicerin is thought to play a role in the normal development of chicken kidney, because it is expressed abundantly in the embryonic organ and only slightly in the mature organ. In this study, we have examined the adhesive activity of gicerin in the kidney to characterize its function in organogenesis. We have also examined the function of gicerin in chicken nephroblastomas (“embryonic nephromas”), which show various structures resembling those in embryonic kidneys. Immunohistochemically, the expression patterns of gicerin and neurite outgrowth factor in nephroblastomas are similar to those of embryonic kidneys. Cell-aggregation assays have shown that primary culture cells from both embryonic kidneys and nephroblastomas have strong aggregation activities, and that each aggregation is partially inhibited by gicerin antibody. In contrast, cells from adult kidney exhibit weak aggregation activity that is not inhibited by the antibody. In addition, ligand blot analysis has revealed that gicerins in embryonic kidney and nephroblastoma bind to purified neurite outgrowth factor, whereas extracts from adult kidney show no positive reaction. These findings suggest that the homophilic and heterophilic adhesive activities of gicerin are involved in the formation of both normal kidney and nephroblastoma.  相似文献   

16.
The three-dimensional organization of the ubiquitous extracellular matrix glycoprotein fibronectin regulates cell fate and morphogenesis during development; in particular tubule formation that constitutes the vasculature, lung and kidney. Tenascin-C is a matrix protein with a restricted expression pattern; it is specifically up-regulated at sites of fibronectin fibril assembly during development and in remodeling adult tissues. Here we demonstrate that specific domains of tenascin-C inhibit fibronectin matrix assembly whereas full-length tenascin-C does not. These domains act via distinct mechanisms: TNfn1-8 blocks fibrillogenesis by binding to fibronectin fibrils and preventing intermolecular fibronectin interactions whilst FBG acts independently of binding to fibronectin and instead is internalized and causes cytoskeletal re-organization. We also show that TNfn1-8 disrupts epithelial cell tubulogenesis. Our data demonstrate that tenascin-C contains cryptic sites which can control tissue levels of fibrillar fibronectin either by preventing de novo fibril assembly or reducing levels of deposited fibronectin. Exposure of these domains during tissue remodeling may provide a novel means of controlling fibronectin assembly and tubulogenic processes dependent on the assembly of this matrix.  相似文献   

17.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

18.
19.
Recent studies have shown that the extracellular matrix modifies the behaviour of endothelial cells. We have studied the effects of extracellular matrix components on retinal capillary endothelial cell migration and proliferation. Bovine retinal capillary endothelial cells were selectively cultured from collagenase-digested microvessel fragments. In a filter system for the assessment of migration, endothelial cells responded to substrate-bound fibronectin but not to soluble fibronectin. Cell migration on collagen- or gelatin-coated filters was minimal, and these cells failed to adopt a spread morphology, remaining instead as round cells. Cell replication was quantified using a protein dye binding assay for adherent cells in 96 well plates. Serum was essential for growth irrespective of the substrate. Cells harvested from microvessel cultures proliferated more rapidly on collagen- and gelatin-coated plastic than on fibronectin and were unaffected by additions to the medium such as endothelial cell conditioned medium, whereas cells proliferating directly from the microvessels grew at a faster rate on fibronectin and also responded to conditioned medium supplement. When cultured on collagen gels, initial microvessel cells and harvested cells required surface fibronectin in order to adopt a cobblestone morphology. These results show that fibronectin is a requirement for bovine retinal capillary endothelial cell migration, but proliferation of these cells can be supported, with slight differences, by both fibronectin and collagen provided serum growth factors are present. These findings are relevant to the early phase of angiogenesis in which migration and proliferation of endothelial cells occurs.  相似文献   

20.
Fibronectin is a major adhesive glycoprotein of the vascular basement membrane. Since fibronectin is also found in the interstitium, it may be important not only for attachment but also for endothelial cell migration during neovascularization. We have analyzed how human dermal microvascular endothelial cells use their diverse set of integrin receptors to interact with this ligand. Immunofluorescent staining with specific antibodies identified both beta 1 and beta 3 integrin receptor complexes in focal adhesion plaques on cells adhering to immobilized fibronectin. Adhesion assays with blocking monoclonal antibodies implicated both beta 1 and beta 3 complexes, specifically alpha 5 beta 1 and alpha v beta 3, in the initial adhesion of cells to fibronectin. Finally, ligand affinity chromatography of extracts of surface radiolabeled cells established that both alpha 5 beta 1 and alpha v beta 3 could bind to the 110-kDa cell-binding fragment of fibronectin. An additional receptor complex composed of an alpha v subunit and a beta 5-like subunit was also detected. These results provide evidence that microvascular endothelial cells use multiple integrin receptors, from several beta families, to attach to fibronectin surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号