首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have cloned the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Here, we have subjected the HCMV BAC to random transposon (Tn) mutagenesis using a Tn1721-derived insertion sequence and have provided the conditions for excision of the BAC cassette. We report on a fast and efficient screening procedure for a Tn insertion library. Bacterial clones containing randomly mutated full-length HCMV genomes were transferred into 96-well microtiter plates. A PCR screening method based on two Tn primers and one primer specific for the desired genomic position of the Tn insertion was established. Within three consecutive rounds of PCR a Tn insertion of interest can be assigned to a specific bacterial clone. We applied this method to retrieve mutants of HCMV envelope glycoprotein genes. To determine the infectivities of the mutant HCMV genomes, the DNA of the identified BACs was transfected into permissive fibroblasts. In contrast to BACs with mutations in the genes coding for gB, gH, gL, and gM, which did not yield infectious virus, BACs with disruptions of open reading frame UL4 (gp48) or UL74 (gO) were viable, although gO-deficient viruses showed a severe growth deficit. Thus, gO (UL74), a component of the glycoprotein complex III, is dispensable for viral growth. We conclude that our approach of PCR screening for Tn insertions will greatly facilitate the functional analysis of herpesvirus genomes.  相似文献   

3.
We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the largest member of the herpesvirus family, human cytomegalovirus (HCMV). In this study, an HCMV chip was fabricated and used to characterize the temporal class of viral gene expression. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of oligonucleotides on glass for ORFs in the HCMV genome. Viral gene expression was monitored by hybridization to the oligonucleotide microarrays with fluorescently labelled cDNAs prepared from mock-infected or infected human foreskin fibroblast cells. By using cycloheximide and ganciclovir to block de novo viral protein synthesis and viral DNA replication, respectively, the kinetic classes of array elements were classified. The expression profiles of known ORFs and many previously uncharacterized ORFs provided a temporal map of immediate-early (alpha), early (beta), early-late (gamma1), and late (gamma2) genes in the entire genome of HCMV. Sequence compositional analysis of the 5' noncoding DNA sequences of the temporal classes, performed by using algorithms that automatically search for defined and recurring motifs in unaligned sequences, indicated the presence of potential regulatory motifs for beta, gamma1, and gamma2 genes. In summary, these fabricated microarrays of viral DNA allow rapid and parallel analysis of gene expression at the whole viral genome level. The viral chip approach coupled with global biochemical and genetic strategies should greatly speed the functional analysis of established as well as newly discovered large viral genomes.  相似文献   

4.
5.
水痘-带状疱疹病毒(VZV)属于疱疹病毒科α亚科,其原发感染为水痘,潜伏再度激活则引起带状疱疹。目前对其基因功能和疫苗的减毒机制尚不十分清楚。细菌人工染色(BAC)是一种新的用于大分子DNA克隆的载体系统,它具有容量大、遗传稳定、操作简单等优点。将VZV全基因组克隆至BAC系统构建成VZV的感染性克隆,并利用现代基因修饰技术可极大促进对该病毒的研究。就近年来以BAC为基础VZV感染性克隆技术的建立和应用做一综述。  相似文献   

6.
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ~200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.  相似文献   

7.
Xu Y  Cei SA  Huete AR  Pari GS 《Journal of virology》2004,78(19):10360-10369
Human cytomegalovirus (HCMV) UL84 is required for oriLyt-dependent DNA replication, and evidence from transient transfection assays suggests that UL84 directly participates in DNA synthesis. In addition, because of its apparent interaction with IE2, UL84 is implicated as a possible regulatory protein. To address the role of UL84 in the context of the viral genome, we generated a recombinant HCMV bacterial artificial chromosome (BAC) construct that did not express the UL84 gene product. This construct, BAC-IN84/Ep, displayed a null phenotype in that it failed to produce infectious virus after transfection into human fibroblast cells, whereas a revertant virus readily produced viral plaques and, subsequently, infectious virus. Real-time quantitative PCR showed that BAC-IN84/Ep was defective for DNA synthesis in that no increase in the accumulation of viral DNA was observed in transfected cells. We were unable to complement BAC-IN84/Ep in trans; however, oriLyt-dependent DNA replication was observed by the cotransfection of UL84 and BAC-IN84/Ep. An analysis of viral mRNA by real-time PCR indicated that, even in the absence of DNA synthesis, all representative kinetic classes of genes were expressed in cells transfected with BAC-IN84/Ep. The detection of UL44 and IE2 by immunofluorescence in BAC-IN84/Ep-transfected cells showed that these proteins failed to partition into replication compartments, indicating that UL84 expression is essential for the formation of these proteins into replication centers within the context of the viral genome. These results show that UL84 provides an essential DNA replication function and influences the subcellular localization of other viral proteins.  相似文献   

8.
Human herpesvirus 6A (HHV-6A) is a member of the genus Roseolovirus and the subfamily Betaherpesvirinae. It is similar to and human cytomegalovirus (HCMV). HHV-6A encodes a 41 kDa nuclear phosphoprotein, U27, which acts as a processivity factor in the replication of the viral DNA. HHV-6A U27 has 43% amino acid sequence homology with HCMV UL44, which is important for DNA replication. A previous study on HHV-6A U27 revealed that it greatly increases the in vitro DNA synthesis activity of HHV-6A DNA polymerase. However, the role of U27 during the HHV-6A virus replication process remains unclear. In this study, we constructed a U27-deficient HHV-6A mutant (HHV-6ABACU27mut) with a frameshift insertion at the U27 gene using an HHV-6A bacterial artificial chromosome (BAC) system. Viral reconstitution from the mutant BAC DNA was not detected, in contrast to the wild type and the revertant from the U27 mutant. This suggests that U27 plays a critical role in the life cycle of HHV-6A.  相似文献   

9.
Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus‐infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time‐consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat‐Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene‐ablated HSV but also gene knock‐in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein–Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.  相似文献   

10.
11.
12.
Flap endonuclease 1 (FEN1) is a member of the family of structure-specific endonucleases implicated in regulation of DNA damage response and DNA replication. So far, knowledge on the role of FEN1 during viral infections is limited. Previous publications indicated that poxviruses encode a conserved protein that acts in a manner similar to FEN1 to stimulate homologous recombination, double-strand break (DSB) repair and full-size genome formation. Only recently, cellular FEN1 has been identified as a key component for hepatitis B virus cccDNA formation. Here, we report on a novel functional interaction between Flap endonuclease 1 (FEN1) and the human cytomegalovirus (HCMV) immediate early protein 1 (IE1). Our results provide evidence that IE1 manipulates FEN1 in an unprecedented manner: we observed that direct IE1 binding does not only enhance FEN1 protein stability but also phosphorylation at serine 187. This correlates with nucleolar exclusion of FEN1 stimulating its DSB-generating gap endonuclease activity. Depletion of FEN1 and inhibition of its enzymatic activity during HCMV infection significantly reduced nascent viral DNA synthesis demonstrating a supportive role for efficient HCMV DNA replication. Furthermore, our results indicate that FEN1 is required for the formation of DSBs during HCMV infection suggesting that IE1 acts as viral activator of FEN1 in order to re-initiate stalled replication forks. In summary, we propose a novel mechanism of viral FEN1 activation to overcome replication fork barriers at difficult-to-replicate sites in viral genomes.  相似文献   

13.
14.
In an effort to increase the density of sequence-based markers for the horse genome we generated 9473 BAC end sequences (BESs) from the CHORI-241 BAC library with an average read length of 677 bp. BLASTN searches with the BESs revealed 4036 meaningful hits (E 相似文献   

15.
The human cytomegalovirus (HCMV) protein US6 inhibits the transporter associated with antigen processing (TAP). Since TAP transports antigenic peptides into the endoplasmic reticulum for binding to major histocompatibility class I molecules, inhibition of the transporter by HCMV US6 impairs the presentation of viral antigens to cytotoxic T lymphocytes. HCMV US6 inhibits ATP binding by TAP, hence depriving TAP of the energy source it requires for peptide translocation, yet the molecular basis for the interaction between US6 and TAP is poorly understood. In this study we demonstrate that residues 89 to 108 of the HCMV US6 luminal domain are required for TAP inhibition, whereas sequences that flank this region stabilize the binding of the viral protein to TAP. In parallel, we demonstrate that chimpanzee cytomegalovirus (CCMV) US6 binds, but does not inhibit, human TAP. The sequence of CCMV US6 differs from that of HCMV US6 in the region corresponding to residues 89 to 108 of the HCMV protein. The substitution of this region of CCMV US6 with the corresponding residues from HCMV US6 generates a chimeric protein that inhibits human TAP and provides further evidence for the pivotal role of residues 89 to 108 of HCMV US6 in the inhibition of TAP. On the basis of these observations, we propose that there is a hierarchy of interactions between HCMV US6 and TAP, in which residues 89 to 108 of HCMV US6 interact with and inhibit TAP, whereas other parts of the viral protein also bind to TAP and stabilize this inhibitory interaction.  相似文献   

16.
Bacterial artificial chromosomes (BACs) are well-established cloning vehicles for functional genomics and for constructing targeting vectors and infectious viral DNA clones. Red-recombination-based mutagenesis techniques have enabled the manipulation of BACs in Escherichia coli without any remaining operational sequences. Here, we describe that the F-factor-derived vector sequences can be inserted into a novel position and seamlessly removed from the present location of the BAC-cloned DNA via synchronous Red-recombination in E. coli in an en passant mutagenesis-based procedure. Using this technique, the mini-F elements of a cloned infectious varicella zoster virus (VZV) genome were specifically transposed into novel positions distributed over the viral DNA to generate six different BAC variants. In comparison to the other constructs, a BAC variant with mini-F sequences directly inserted into the junction of the genomic termini resulted in highly efficient viral DNA replication-mediated spontaneous vector excision upon virus reconstitution in transfected VZV-permissive eukaryotic cells. Moreover, the derived vector-free recombinant progeny exhibited virtually indistinguishable genome properties and replication kinetics to the wild-type virus. Thus, a sequence-independent, efficient, and easy-to-apply mini-F vector transposition procedure eliminates the last hurdle to perform virtually any kind of imaginable targeted BAC modifications in E. coli. The herpesviral terminal genomic junction was identified as an optimal mini-F vector integration site for the construction of an infectious BAC, which allows the rapid generation of mutant virus without any unwanted secondary genome alterations. The novel mini-F transposition technique can be a valuable tool to optimize, repair or restructure other established BACs as well and may facilitate the development of gene therapy or vaccine vectors.  相似文献   

17.
Abstract We tried to detect human cytomegalovirus (HCMV) DNA in CD4 + and CD8 + T lymphocytes from fourteen infants with HCMV hepatitis using polymerase chain reaction (PCR) assay. HCMV was isolated from their urine and anti-HCMV IgM antibody was detected in their sera. One set of primers were designed from a region — a major immediate early (IE) gene. We detected HCMV IE DNA in the specimens obtained from six infants. HCMV IE DNA was detected from CD4 + cells in two cases and from CD8 + cells in one. In three cases, HCMV IE DNA was detected from both CD4 + and CD8 + cells. We also studied the relationship between HCMV infection and serum levels of cytokines. We determined serum levels of interleukin-4 (IL-4), tumor necrosis factor alpha (TNF-α) and soluble interleukin 2 receptor (sIL-2R) which were associated with the activation of T lymphocytes by enzyme immunoassay. In the acute phase of HCMV infection, titers of sIL-2R were correlated with serum levels of liver enzymes in some cases. IL-4 and TNF-α activities were not detected in sera. It is likely that expression of viral genome on T lymphocytes as well as activities of some cytokines are associated with active HCMV infection.  相似文献   

18.
A highly efficient lambda phage recombination system previously utilized for studies of bacterial artificial chromosome (BAC)-maintained mouse chromosomal DNA was adapted for the study of the role of human cytomegalovirus (HCMV)-encoded pp28 (UL99) in virus replication. Incorporating a two-step mutagenesis strategy with blue/white selection in Escherichia coli containing a HCMV AD169 BAC, we have shown that we can rapidly introduce point mutations into the HCMV BAC using linear PCR fragments. All manipulations were carried out in bacteria, which greatly accelerated the introduction and analysis of mutations in the viral genome. Our results indicated that HCMV pp28 was essential for the production of infectious virus and that introduction of a single base change that resulted in loss of the myristylation site on pp28 was also associated with the lack of production of infectious virus. Although the block in the viral morphogenesis cannot be determined from these studies, the latter finding suggested that authentic intracellular localization of pp28, not only the expression of the protein, is required for virus assembly.  相似文献   

19.
RNase P complexed with external guide sequence (EGS) represents a novel nucleic-acid-based gene interference approach to modulate gene expression. In this study, a functional EGS RNA was constructed to target the overlapping mRNA region of two human cytomegalovirus (HCMV) capsid proteins, the capsid scaffolding protein (CSP) and assemblin. The EGS RNA was shown to be able to direct human RNase P to cleave the target mRNA sequence efficiently in vitro. A reduction of approximately 75%-80% in the mRNA and protein expression levels of both CSP and assemblin and a reduction of 800-fold in viral growth were observed in human cells that expressed the functional EGS, but not in cells that either did not express the EGS or produced a "disabled" EGS that carried nucleotide mutations that precluded RNase P recognition. The action of the EGS is specific as the RNase P-mediated cleavage only reduces the expression of the CSP and assemblin but not other viral genes examined. Further studies of the antiviral effects of the EGS indicate that the expression of the functional EGS has no effect on HCMV genome replication but blocks viral capsid maturation, consistent with the notion that CSP and assemblin play essential roles in HCMV capsid formation. Our study provides the first direct evidence that EGS RNAs effectively inhibit HCMV gene expression and growth. Moreover, these results demonstrate the utility of EGS RNAs in gene therapy applications, including the treatment of HCMV infection by inhibiting the expression of virus-encoded essential proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号