首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
2.
3.
4.
5.
6.
7.
This study correlates the morphological and biochemical events during the accumulation of hepatic lipids in diabetic rats in response to insulin treatment and a high-carbohydrate, fat-free diet. Alloxan-diabetic rats were fed a high-carbohydrate, fat-free diet and treated with insulin for 12, 36, or 60 hr or 4.5 or 6.5 days. Samples of livers were obtained for determination of malic enzyme activity and the histochemical demonstration of lipids. An increased accumulation of hepatic lipids, although delayed, was observed following insulin treatment of diabetic rats fed the special diet. Small lipid droplets were visible after 36 hr of treatment, which later increased and coalesced into larger droplets present in all hepatocytes. Maximal accumulation was observed at 4.5 days of treatment. These changes were paralleled by an increase in the activity of hepatic malic enzyme. By 6.5 days of treatment, the lipid content of the hepatocytes had decreased and a periportal pattern was discernible. In contrast, malic enzyme activity continued to increase through 6.5 days of treatment. By comparison, no hepatic lipid accumulation occurred in regular chow-fed diabetic rats receiving insulin treatment or in diabetic rats placed on the special diet alone. These results suggest that the combination of insulin treatment and a high-carbohydrate, fat-free diet caused an imbalance in the production and mobilization of hepatic lipids.  相似文献   

8.
9.
10.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

11.
12.
13.
14.
采用高效的由mRNA合成cDNA的方法,我们得到了含有3.7kb的脂肪酸合成酶基因片段的克隆pFAS_(203)。它具有限制内切酶PstⅠ、BamH Ⅰ、HineⅡ、PvuⅡ、Ava Ⅰ以及Pvu Ⅰ酶切位点,与已经得到的经杂交选择的mRNA离体翻译产物鉴定的cDNA克隆pFAS_(15)有部分重叠。对饥饿的糖尿病大鼠注射胰岛素并饲以无脂食物,肝中FAS mRNA以及其前体RNA含量增加,当注射后再饲无脂食物达12小对,肝中FASmRNA及其前体RNA约为糖尿病鼠的30倍。Poly(A)~+ RNA的Northern分析表明诱导期间FASmRNA含量增加而其分子大小不变。这些结果表明胰岛素对FAS基因的转录有调节作用。胰岛素诱导后的脂肪酸合成酶活性升高是在转录水平上调节的。  相似文献   

15.
16.
The induction of NADPH-generating enzymes by polychlorinated biphenyls (PCB) in rats was investigated. The administration of PCB to rats for 3 and 14 days increased the activities of malic enzyme (ME, EC 1.1.1.40), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44) about 2-fold above the control level in the liver. Hepatic mRNA levels of ME, G6PD, and 6PGD, except for G6PD mRNA of the 14-day group, were also elevated to the same degree as the enzyme activities in PCB-treated rats. In rats fed a PCB-containing diet for 1 day, the hepatic mRNA levels of ME and G6PD were elevated prior to the induction of enzyme activity. In the kidney, lung, spleen, heart, and testis, the mRNA levels of ME, G6PD, and 6PGD were not affected by PCB. The induction of hepatic NADPH-generating enzymes would imply an increased demand of NADPH in the liver of rats fed with a PCB-containing diet.  相似文献   

17.
18.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

19.
Rats fed on a low protein diet show an increase in the specific activity of malic enzyme and a concomitant decrease of glutathione concentration. We have studied the effect on malic enzyme activity of supplementing of low protein diet with essential amino acids. Only when methionine was excluded from the diet did the specific activity of malic enzyme increase to the same extent as found in rats fed with low protein diet. Immunoprecipitation of malic enzyme indicated that specific activity changes are the result of changes in the amounts of enzyme. Under all dietary conditions studied, the increase in malic enzyme activity is associated with a decrease in the concentration of GSH. To evaluate the possible causative role of GSH in malic enzyme induction, the specific activity of malic enzyme was measured in rats treated with BSO, an inhibitor of GSH biosynthesis. The results show that in BSO-treated rats the decrease of GSH levels is also accompanied by an increase in the activity of malic enzyme.  相似文献   

20.
The incorporation of exogenous fatty acid into lipids of liver and liver nuclei of rats fed diets with or without fat was compared. When [3H]palmitic acid was injected into rats, more radioactivity was incorporated into triacylglycerols and phospholipids of liver and liver nuclei from rats fed the fat-free diet than from those fed the fat diet. The results were supported further by an autoradiographic study. On the other hand, the enzyme induction and quantity of malic enzyme mRNA were decreased by fat feeding. Other lipogenic enzymes were also coordinately decreased. Thus, it may be possible that exogenous fatty acid is involved in nuclear regulation in addition to cytosolic regulation of lipogenic enzyme induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号