首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to develop a control system for electrical stimulation of paralysed muscle and improve muscle resistance to fatigue, it is useful to investigate the possibilities of simulating the control systems of the normal body. One way is the periodic shifting of stimulation from one muscle to another. This technique is called sequential stimulation and allows sufficient rest time for each muscle to reduce fatigue and consequently prolong muscle strength. It can also be seen to improve the muscle recovery time. In the following study, the muscles rectus femoris, vastus lateralis and vastus medialis were used to keep the knee locked and extended during stimulation. Several experiments were carried out using a three-channel computer controlled stimulator. The results for three-phase sequential stimulation (33% duty cycle per muscle) were most effective and significantly improved the muscle fatigue characteristics.  相似文献   

2.
This investigation examined the mechanical responses of malignant hyperthermic (MH) and normal porcine skeletal muscle to repetitive stimulation. Twitch and maximal tetanic tensions were not significantly different between muscle types. Tensions produced during stimulation at 20-80 Hz were significantly less in MH muscle than in normal muscle. In addition, MH muscle showed significantly greater force decline (tetanic fade) at the end of contractions evoked by 20-80 Hz stimulation. When stimulated to fatigue, both normal and MH muscle exhibited similar rates of tension decline during the initial minutes. Further stimulation caused additional decline in normal muscle, but a tension plateau in MH muscle. In all cases, normal muscle had greater magnitudes of fatigue than did MH muscle. Results show that there are marked differences between MH and normal muscle in the mechanical responses to repetitive stimulation. Due to its inability to properly regulate intracellular Ca2+ exchange, it is possible that MH muscle might be a useful tool for identifying the mechanisms of muscle fatigue in normal muscle.  相似文献   

3.
Laryngeal elevation achieved by neuromuscular stimulation at rest.   总被引:5,自引:0,他引:5  
During swallowing, airway protection is achieved in part by laryngeal elevation. Although multiple muscles are normally active during laryngeal elevation, neuromuscular stimulation of select muscles was evaluated to determine which single muscle or muscle pair best elevates the larynx and should be considered during future studies of neuromuscular stimulation in dysphagic patients. Hooked-wire monopolar electrodes were inserted into mylohyoid, thyrohyoid, and geniohyoid muscle regions in 15 healthy men selected for having a highly visible thyroid prominence for videotaping. During trials of single, bilateral, and combined muscle stimulations, thyroid prominence movements were video recorded, digitized, and normalized relative to elevation during a 2-ml water swallow. Individual muscle stimulation induced approximately 30% of the elevation observed during a swallow and approximately 50% of swallow velocity, whereas paired muscle stimulation resulted in approximately 50% of the elevation and approximately 80% of the velocity produced during a swallow. Paired muscle stimulation produced significantly greater elevation than single muscle stimulation and could assist with laryngeal elevation in dysphagic patients with reduced or delayed laryngeal elevation.  相似文献   

4.
Some of the factors which influence the development of tension in cat tenuissimus muscle were studied quantitatively. Under isometric conditions, it was shown that the dynamic properties of the relationship between the tension of the muscle and its electrical stimulation depend on the mean rate of stimulation. This non-linear effect cannot be explained on the basis of the dependence of muscle tension on instantaneous rate of stimulation since the tension due to a stimulus following closely a previous stimulus is augmented, but the time course of the twitch response is unaltered. The interaction between the tension due to active contraction and that due to the viscoelastic properties of the muscle was investigated by independently varying muscle length and the rate of stimulation. Within the limits of resolution of the data, it was concluded that these two components of tension are additive and that muscle stiffness is related to the instantaneous tension of the muscle.  相似文献   

5.
Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.  相似文献   

6.
1. The effects of beta-adrenoceptor antagonist administration on skeletal muscle contractile performance and bioenergetics in vivo have been investigated during unilateral sciatic nerve stimulation in the rat. 2. Two muscle stimulation protocols have been used: supramaximal stimulation at 4 Hz, or incremental supramaximal stimulation at 1, 2 and 4 Hz. Changes in high-energy phosphate concentrations were followed using 31P-n.m.r., and gastrocnemius muscle twitch characteristics were monitored continuously. 3. Under all conditions investigated, DL-propranolol administration (2.5 mg/kg body wt.) caused a significant decrease in cyclic AMP concentrations in resting and stimulated gastrocnemius muscle, prevented an increase in heart rate upon muscle stimulation, but did not affect plasma glucose, fatty acid or lactate concentrations in comparison with values obtained in control experiments. 4. Administration of DL-propranolol 5 min or 35 min before unilateral stimulation of 4 Hz had no effect on changes in muscle phosphocreatine, ATP or Pi concentrations, intracellular pH or contractile performance. 5. In contrast, animals receiving DL-propranolol 5 min before unilateral stimulation of 1, 2 and 4 Hz showed a significant deterioration in gastrocnemius muscle tension development during 2 and 4 Hz stimulation compared with control animals. Concurrent with this change in contractile performance was a higher muscle concentration of phosphocreatine, a lower concentration of Pi and no significant change in intramuscular pH compared with control experiments. 6. The changes in muscle performance and bioenergetics observed during the incremental stimulation protocol were not observed when D-propranolol was administered and could be completely circumvented by a short period of muscle stimulation of 4 Hz prior to initiation of the incremental stimulation protocol. 7. Mechanisms are discussed which may account for the failure of gastrocnemius muscle to generate the expected force during the incremental stimulation protocol in the presence of beta-blockade.  相似文献   

7.
The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.  相似文献   

8.
The functional state of rat's airway smooth muscle was not changed after nitrogen dioxide inhalation for 30 days. The smooth muscle contraction increased only at second stimulation of preganglionic nervous fibers. Removal of mucosa or Novocain blockade of receptors decreased control smooth contraction at nerve and muscle fiber stimulation but the repeated stimulation of nerve increased the muscle contraction. The processing of trachea and bronchus preparations by prednisolon (1-10 microg/ml) decreased muscle reactions to 12% only at nerve stimulation. Prednisolon didn't change reactions of preparations with removed or blockaded receptors induced by nerve stimulation, but prednisolon (10 microg/ml) increased contraction at muscle stimulation. The relax effect of prednisolon on airway smooth muscle realizes via tracheobronchial receptors. High doses of prednisolon may direct effect on muscle increasing its contraction.  相似文献   

9.
The effects of denervation and of direct electrical stimulation of denervated muscle upon the acetylcholine receptor (AChR) clusters and acetylcholinesterase (AChE) spots in the fast avian muscle posterior latissimus dorsi have been investigated. Denervation at day 2 after hatching leads to a disappearance of the junctional AChR clusters and to a marked decrease of AChE spots. Direct electrical stimulation of denervated muscle allows the maintenance of AChR clusters and partly prevents the loss of AChE spots. When AChR cluster and post-synaptic AChE have disappeared in a denervated muscle, muscle activity induced by direct stimulation is unable to induce their accumulation.  相似文献   

10.
This study examined the relationships between muscle fiber type, metabolism, and blood flow vs. the increase in skeletal muscle (1)H-NMR transverse relaxation time (T2) after stimulation. Triceps surae muscles of anesthetized rats were stimulated in situ at 1-10 Hz for 6 min, and T2 was calculated from (1)H-NMR images acquired at 4.7 T immediately after stimulation. At low-to-intermediate frequencies (1-5 Hz), the stimulation-induced T2 increase was greater in the superficial, fast-twitch white portion of the gastrocnemius muscle compared with the deeper, more aerobic muscles of the triceps surae group. Although whole triceps muscle area changed in parallel with T2 after stimulation when blood flow was intact, clamping of the femoral artery during stimulation prevented an increase in muscle area but not an increase in T2. Partial inhibition of lactic acid production with iodoacetate diminished intracellular acidification (measured by (31)P-NMR spectroscopy) during brief (1.5 min) stimulation but had no significant effect either on estimated osmolite accumulation or on muscle T2 after stimulation. Depletion of muscle phosphocreatine content by feeding rats beta-guanidinopropionate decreased both estimated osmolite accumulation and T2 after 1.5-min stimulation. The results are consistent with the hypothesis that the T2 increase in stimulated muscle is related to osmotically driven shifts of fluid into an intracellular compartment.  相似文献   

11.
The effect of muscle stimulation dynamics on the sensitivity of jumping achievement to variations in timing of muscle stimulation onsets was investigated. Vertical squat jumps were simulated using a forward dynamic model of the human musculoskeletal system. The model calculates the motion of body segments corresponding to STIM(t) of six major muscle groups of the lower extremity, where STIM is muscle stimulation level. For each muscle, STIM was allowed to switch “on” only once. The subsequent rise of STIM to its maximum was described using a sigmoidal curve, the dynamics of which was expressed as rise time (RT). For different values of stimulation RT, the optimal set of onset times was determined using dynamic optimization with height reached by the center of mass as performance criterion. Subsequently, 200 jumps were simulated in which the optimal muscle stimulation onset times were perturbed by adding to each a small number taken from a Gaussian-distributed set of pseudo-random numbers. The distribution of heights achieved in these perturbed jumps was used to quantify the sensitivity of jump height to variations in timing of muscle stimulation onsets. It was found that with increasing RT, the sensitivity of jump height to timing of stimulation onset times decreased. To try and understand this finding, a post-hoc analysis was performed on the perturbed jumps. Jump height was most sensitive to errors in the delay between stimulation onset times of proximal muscles and stimulation onset times of plantar flexors. It is explained how errors in this delay cause aberrations in the configuration of the system, which are regenerative and lead to relatively large jump height deficits. With increasing RT, the initial aberrations due to erroneous timing of muscle stimulation are smaller, and the regeneration is less pronounced. Finally, it is speculated that human subjects decrease or increase RT depending on the relative importance of different performance criteria. Received: 16 February 1998 / Accepted in revised form: 1 March 1999  相似文献   

12.
Functional electrical stimulation is used to restore movement and function of paralyzed muscles by activating skeletal muscle artificially. An accurate and predictive mathematical model can facilitate the design of stimulation patterns that produce the desired force. The present study is a first step in developing a mathematical model for non-isometric muscle contractions. The goals of this study were to: (1) identify how our isometric force model's parameters vary with changes in knee joint angle, (2) identify the best knee flexion angle to parameterize this model, and (3) validate the model by comparing experimental data to predictions in response to a wide range of stimulation frequencies and muscle lengths. Results showed that by parabolically varying one of the free parameters with knee joint angle and fixing the other parameters at the values identified at 40 degrees of knee flexion, the model could predict the force responses to a wide range of stimulation frequencies and patterns at different muscle lengths. This work showed that the current isometric force model is capable of predicting the changes in skeletal muscle force at different muscle lengths.  相似文献   

13.
Electrical stimulation (1-ms pulses, 100 Hz) produces more torque than expected from motor axon activation (extra contractions). This experiment investigates the most effective method of delivering this stimulation for neuromuscular electrical stimulation. Surface stimulation (1-ms pulses; 20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s) was delivered to triceps surae and wrist flexors (muscle stimulation) and to median and tibial nerves (nerve stimulation) at two intensities. Contractions were evaluated for amplitude, consistency, and stability. Surface electromyograph was collected to assess how H-reflexes and M-waves contribute. In the triceps surae, muscle stimulation produced the largest absolute contractions (23% maximal voluntary contraction), evoked the largest extra contractions as torque increased by 412% after the 100-Hz stimulation, and was more consistent and stable compared with tibial nerve stimulation. Absolute and extra contraction amplitude, consistency, and stability of evoked wrist flexor torques were similar between stimulation types: torques reached 11% maximal voluntary contraction, and extra contractions increased torque by 161%. Extra contractions were 10 times larger in plantar flexors compared with wrist flexors with muscle stimulation but were similar with nerve stimulation. For triceps surae, H reflexes were 3.4 times larger than M waves during nerve stimulation, yet M waves were 15 times larger than H reflexes during muscle stimulation. M waves in the wrist flexors were larger than H reflexes during nerve (8.5 times) and muscle (18.5 times) stimulation. This is an initial step toward utilizing extra contractions for neuromuscular electrical stimulation and the first to demonstrate their presence in the wrist flexors.  相似文献   

14.
Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle.  相似文献   

15.
The effect of electrical stimulation of autonomic nerves on c-AMP levels in the tibial muscle of rats was studied after pretreatment with a phosphodiesterase inhibitor and a muscle paralyzant. Cyclic-AMP levels in the skeletal muscle increase significantly. This increase is not the result of changes in muscle blood flow which might have resulted from autonomic nerve stimulation. These studies indicate that the adenyl cyclase-cyclic AMP system in skeletal muscle may be controlled by the autonomic nervous system.  相似文献   

16.
The inhibitory innervation of the cervical trachea was studied in situ in anesthetized male guinea pigs. We measured effects of electrical stimulation of vagal motor and sympathetic trunk nerve fibers, during atropine, on trachealis muscle tension. Effects of direct transmural stimulation of trachealis muscle were also determined. We confirmed the dual nature of the inhibitory innervation to this muscle. Vagal motor inhibitory nerves are shown to be preganglionic. Neural transmission at the level of the ganglia is characterized by filtering of high frequency action potentials. The neurotransmitter at the myoneural junction is unidentified but is not norepinephrine. Maximal relaxation accounts for about 20-40% of maximal relaxations seen with transmural stimulation of trachealis muscle in the presence of atropine. Sympathetic trunk nerve fibers are also preganglionic. Neurotransmission at the level of the ganglia is apparently 1:1 at high-action potential frequencies. Norepinephrine released presynaptically has access to smooth muscle beta- but not alpha-receptors. Maximal adrenergic relaxations account for 60-80% of total transmural stimulation relaxations. Transmural stimulation relaxations appear to be accounted for by release of neurotransmitter from sympathetic adrenergic plus vagal nonadrenergic postganglionic nerve fibers.  相似文献   

17.
A nerve clamp electrode was developed to indirectly stimulate skeletal muscle innervated by α motor neurons as an alternative to conventional electrodes. The stimulating electrode device consists of a spring coil-activated nerve clamp mounted inside a 1-mL syringe barrel. Supramaximal pulses were generated by a Grass stimulator and delivered to the nerve segment via the nerve clamp electrode. The salient feature of the electrode is its ability to produce muscle contractions indirectly through stimulation of the attached nerve. Indirect muscle stimulation is critical for studying the paralytic actions of presynaptic-acting toxins such as botulinum neurotoxins (BoNT), a potent inhibitor of acetylcholine (ACh) release from α motor neurons. This device enables stimulation of muscle contraction indirectly as opposed to contraction from direct muscle stimulation. The electrode is able to stimulate indirect muscle contraction when tested on ex vivo preparations from rodent phrenic nerve-hemidiaphragm muscle in similar fashion to conventional electrodes. In addition, the electrode stimulated external intercostal nerve-muscle preparations. This was confirmed after applying BoNT serotype A, a potent inhibitor of ACh release, to induce muscle paralysis. Alternative methods, including suction and bipolar loop electrodes, were unsuccessful in stimulating indirect muscle contraction. Therefore, this novel electrode is useful for physiological assessment of nerve agents and presynaptic actions of toxins that cause muscle paralysis. This electrode is useful for stimulating nerve-muscle preparations for which the length of nerve is a concern.  相似文献   

18.
The oxidative stress produced by electrical stimulation-induced muscle contraction was examined in the skeletal muscle proteins of rats that had been fed on the dietary flavonoid, (-)-epigallocatechin gallate (EGCg). Electrical stimulation of the rat leg muscle every second day for a two-week period resulted in an increased (p < 0.05) muscle weight and accumulation of oxidatively induced modified proteins. Similar stimulation conducted every day for only one week had no effect on the muscle weight or protein oxidation, although the rate of protein degradation increased. Rats fed on a 20% casein diet supplemented with 0.1% EGCg for 2 weeks responded to the electrical stimulation of muscle contraction by reducing the increased muscle protein carbonyl content when compared to their counterparts fed on a control diet. There was no change in activity of antioxidative enzymes in muscle tissue of the EGCg-fed rats receiving electrical stimulation. The results of this study show that the antioxidative property of EGCg was effective for suppressing oxidative modification of the skeletal muscle protein induced by electrical stimulation. This finding demonstrates that EGCg has a beneficial effect in vivo on the free radical-mediated oxidative damage to muscle proteins.  相似文献   

19.
20.
Electrical muscle stimulation (Mstim) at a low or high frequency is associated with failure of force production, but the exact mechanisms leading to fatigue in this model are still poorly understood. Using 31P magnetic resonance spectroscopy (31PMRS), we investigated the metabolic changes in rabbit tibialis anterior muscle associated with the force decline during Mstim at low (10 Hz) and high (100 Hz) frequency. We also simultaneously recorded the compound muscle mass action potential (M-wave) evoked by direct muscle stimulation, and we analyzed its post-Mstim variations. The 100-Hz Mstim elicited marked M-wave alterations and induced mild metabolic changes at the onset of stimulation followed by a paradoxical recovery of phosphocreatine (PCr) and pH during the stimulation period. On the contrary, the 10-Hz Mstim produced significant PCr consumption and intracellular acidosis with no paradoxical recovery phenomenon and no significant changes in M-wave characteristics. In addition, the force depression was linearly linked to the stimulation-induced acidosis and PCr breakdown. These results led us to conclude that force failure during 100-Hz Mstim only results from an impaired propagation of muscle action potentials with no metabolic involvement. On the contrary, fatigue induced by 10-Hz Mstim is closely associated with metabolic changes with no alteration of the membrane excitability, thereby underlining the central role of muscle energetics in force depression when muscle is stimulated at low frequency. Finally, our results further indicate a reduction of energy cost of contraction when stimulation frequency is increased from 10 to 100 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号