首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plant science》1987,53(2):157-160
Mesophyll protoplasts of sweet potato (Ipomoea batatas L.) were readilyisolated by soaking chopped leaf tissue in distilled water for 16 h prior to enzymatic digestion. Isolated mesophyll protoplasts began to divide three days after start of culture in liquid modified N6 medium and and formed colonies after 30 days of culture. The colonies transferred to solid medium grew rapidly and differentiated into calli. Some of the calli transplanted onto regeneration medium produced roots.  相似文献   

2.
We have already reported that white-skinned sweet potato (Ipomoea batatas L.) (WSSP) shows antidiabetic activity in streptozotocin (STZ) induced diabetic rats and genetically diabetic models (yellow KK, db/db mice and Zucker fatty rats). In this study, isolation and purification of the antidiabetic component of WSSP were attempted. Almost all antidiabetic activity was found in the cortex of WSSP. The fractionation of the antidiabetic component in the WSSP cortex was done by the following methods: dialysis of the water extract, 85% ethanol precipitation, 15% trichloroacetic acid (TCA) treatment, butyl-, phenyl-hydrophobic column chromatography, and ultrafiltration treatment. The antidiabetic component was not eliminated during dialysis and was soluble in 85% ethanol and 15% TCA, but it passed through a filter that allows the passage of substances of a molescular weight of 30,000. The uniformity of this isolated active component was analyzed using HPLC. A single peak was seen with three different columns (C8 reverse-phase column, anion exchange QA column, and gel filtration column (GFC)), indicating that the component is a uniform substance. The molecular weight of this antidiabetic component was estimated to be 22,000 by GFC analysis. This active component was presumed to be an acidic glycoprotein because it contained protein and sugar and was adsorbed onto the QA column at pH 7.0.  相似文献   

3.
Summary A population of open-pollinated progeny from 12 parents, and the 12 parents, was surveyed for in vitro growth and regeneration characteristics. Four different tissue culture procedures involving different media and the use of different explants to initiate the cultures were used. Petiole explants from young leaves were used as explants for initiation of callus cultures. These were evaluated for callus growth rate, friability, and callus color and texture, before transferring to each of three different regeneration media for evaluation of morphogenetic potential. Small shoot tips also were used to initiate callus cultures, which were evaluated for the same growth characteristics and transferred to growth-regulator free regeneration media. Regeneration occurred through root or shoot regeneration or through embryogenesis. Tissue culture treatment effects, as well as genotypic effects, were highly significant in determining: the types of callus produced, callus growth rates, color and texture on the two types of media used for the second and third subcultures. The family x treatment interaction was generally not statistically significant, affecting only callus color. Estimates of narrow sense heritability for callus growth rate in both the second and third subcultures were high enough (0.35 and 0.63, respectively) for the evaluation of parental lines for selection procedures. These characteristics were also the only early culture callus traits that were consistently correlated with later morphogenesis of the cultures. They were negatively correlated with root or shoot regeneration. The occurence of somatic embryogenesis was not correlated with early callus growth characteristics. Genetic and treatment effects were highly significant in the evaluation of morphogenetic potential, through root or shoot regeneration, or through embryogenesis. Regeneration of all types was of low frequency for all procedures, expressed in 11% of the cultures of the total population.Paper No. 9906 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601, USA. From a thesis submitted by the senior in partial fulfillment of the requirements for the Ph.D. degree  相似文献   

4.
The inhibitory effects of abscisic acid (ABA) on in vitro growth and development of axillary buds from nodal segments of sweet potato (Ipomoea batatas L.) was investigated. ABA at concentrations of 0.01, 0.1, 1.0 or 10.0 mg 1-1 inhibited axillary bud and root development and subsequent plantlet growth. ABA at 10 mg 1-1 completely inhibited axillary shoot development but did not affect the viability of cv. Jewel explants over a culture period of 365 days. Transfer of nodal segments cultured for 90, 180 or 365 days from basal medium containing 10 mg 1-1 ABA to growth regulator-free media resulted in rapid and normal plantlet development. Gibberellic acid at 0.1, 1.0 or 10.0 mg 1-1 in the presence of ABA at 0.1, 1.0 or 10.0 mg 1-1 did not counteract the ABA-induced growth inhibition. Although ABA totally inhibited the growth of 6 sweet potato plant introductions at a concentration of 10.0 mg 1-1, the efficacy of ABA as a suppressant of shoot growth varied with genotype.Abbreviations ABA abscisic acid - GA gibberellic acid - cDNA complementary DNA - PI plant introduction - SE standard error  相似文献   

5.
Sweet potato (Ipomoea batatas L.) embryos excised from the fertilized ovules of 6- to 12-day-old capsules were cultured on MS medium supplemented with NAA, BA, GA separately and in combinations. GA was found essential for initial morphogenesis of globular and heart stages. Seedlings were recovered from late globular stage onwards but recovery was best from advanced embryo stages. Differentiated embryos produced multiple shoots on MS medium +1M NAA÷2M BA +0.5M GA.  相似文献   

6.
Mukherjee A  Debata BK  Mukherjee PS  Malik SK 《Cytobios》2001,106(412):113-124
Ipomoea batatas callus culture raised in a medium supplemented with 2,4-D (2,4-dichlorophenoxy acetic acid) alone or 2,4-D in combination with benzyl adenine, were found to be embryogenic. Supplementation of exogenous chemicals, such as 5 g/l NaCI or 0.7 g/l proline together with a mild dose of 0.2 mg/l 2,4-D, enhanced somatic embryogenesis significantly in all the genotypes tested. Morphological, growth, physiological, histological, and biochemical characteristics of the embryogenic callus were different from the nonembryogenic callus. The former was compact, slow growing, and nodular compared with the fast growing, fragile, nonembryogenic callus. The embryogenic callus tissue had more dry matter, protein and reducing sugar contents compared with the less embryogenic callus. The somatic embryogenic response remained steady in the cultures for up to 96 weeks.  相似文献   

7.
Summary Vitrification is a technically simple method for cryopreserving plant germplasm, requiring only the application of suitable cryoprotectants and rapid cooling rates. Sweetpotato (Ipomoea batatas [L.] Lam.) shoot tips obtained from in vitro plants survived liquid nitrogen (–196°C) exposure following a vitrification-inducing pretreatment. Shoot tips were treated in a stepwise manner with a vitrification solution containing 30% glycerol, 15% ethylene glycol and 15% dimethylsulfoxide in growth medium. Incubation of shoot tips for 1 to 2 h in low concentrations of the vitrification solution enhanced survival. Most surviving shoot tips developed callus, and a variable percentage subsequently formed shoots. Survival was not achieved using two-step cooling procedures. The percentage of shoot tips surviving vitrification and those subsequently forming a shoot varied widely among replications.Abbreviations BA N6-benzyladenine - IBA indole-3-butyric acid - EG ethylene glycol - DMSO dimethylsulfoxide - MS Murashige and Skoog (1962) minerals and vitamins - LN liquid nitrogen - PI plant introduction  相似文献   

8.
Summary The potential of somatic embryogenesis was evaluated for 10 cultivars of sweet potato through extensive embryogenic response and isozyme analysis. Embryogenic callus was induced by incubating lateral buds on Murashige and Skoog medium containing 10 M 2,4-dichlorophenoxyacetic acid for 6–8 weeks. The frequency of embryogenic response was low, and varied with genotypes, ranging from 0 to 17%. Embryo to plantlet formation could be enhanced by the use of the combination of 2,4-dichlorophenoxyacetic acid with kinetin, both used at 0.01 M. Embryogenic callus with its potential of plantlet formation has constantly been maintained for over two years. However, after several subcultures, 0.5 to 12% of embryogenic callus reverted irreversibly into friable fast-growing non-embryogenic callus whose ability to regenerate shoots was then definitively lost. The isozymes of esterase, peroxidase, glutamate oxaloacetate transaminase and acid phosphatase investigated in this study were found appropriate to distinguish compact embryogenic from friable non-embryogenic callus in sweet potato. In fact, the callus reversion was associated with a loss of bands or a decline in isozyme activity. On the contrary, very small changes in isozyme activity or no specific changes at all were observed during the differentiation of embryogenic callus into globular embryos.Abbreviations Acp acid phosphatase - BAP 6-benzylaminopurine - cv cultivar - df degree of freedom - 2,4-D 2,4-dichlorophenoxyacetic acid - Est esterase - Got glutamate oxaloacetate transaminase - IAA indole-3-acetic acid - MS Murashige and Skoog (1962) medium - Prx peroxidase - Tris tris(hydroxymethyl)aminomethane  相似文献   

9.
Plant and Soil - Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers....  相似文献   

10.
11.
This is the first report on successful plant regeneration from protoplasts of sweet potato. Two cultivars (Guyana and Duclos XI) of sweet potato plants propagated under in vitro conditions were used as the source of protoplasts. Green compact calli with meristematic areas were induced in the medium supplemented with 2mg1–1 zeatin, and plant regeneration occurred when these calli were transferred onto the medium with zeatin level reduced to 0.25mg1–1. Plant regeneration was found to be genotype-dependent, since it was only obtained for cultivar Duclos XI.Abbreviations MS Murashige and Skoog basal medium - IAA Indol-3-acetic acid - NAA naphthaleneacetic acid - 2,4-D dichlorophenoxyacetic acid - Mes 2-(N-morpholino)-ethanesulfonic acid - Cpw cell and protoplast washing solution  相似文献   

12.
There was an obvious decrease in caffeic acid derivatives during the boiling of cube-shaped blocks of sweet potatoes. They also decreased in a mixture of freeze-dried sweet-potato powder and water maintained at room temperature. Ascorbic acid prevented the decrease, supporting the occurrence of an enzyme reaction with polyphenol oxidase (PPO). 5-O-Caffeoylquinic acid (5-CQA, "3-O-caffeoylquinic acid" as a trivial name) and 3,5-di-O-caffeoylquinic acid (3,5-CQA), major phenolic compounds of sweet potato, did not change when they were separately heated in boiling water. When the mixture of powdered sweet potato and water was heated at 100 degrees C, there was only a negligible decrease in the total amount of phenolic compounds, and portions of 5-CQA and 3,5-CQA were found to be isomerized to 3-CQA, 4-CQA, 3,4-CQA, and 4,5-CQA. The content and composition of the phenolic compounds in sweet potatoes differed between fresh and long-stored ones, as did their response to heating.  相似文献   

13.
14.
The potential of sweet potato as an alternative crop for bioethanol production has been assessed. We evaluated the amount of soluble sugars, starch and cell wall polysaccharides in tubers of three sweet potato cultivars characterized by different pulp and peel colouration: “Yellow yam” with yellow flesh and brown peel, “White yam” with white flesh and white peel and “Orange yam” with orange flesh and brown peel. The results confirm the high concentration of carbohydrates in sweet potato tubers, especially “Yellow yam”, mainly in the form of starch (67%) and soluble sugars (26%). “Yellow yam”, which is the most widespread cultivar in Salento, appeared the best choice as biomass for bioethanol production. It is characterized by high productivity (20–40 tons/ha year). Results also suggest that “Yellow yam” cultivar has great potential as a bioethanol source in southern Italy with an estimated agroindustrial production yield higher than 2032 l/ha year.  相似文献   

15.
Culture procedures have been developed to facilitate the induction and maintenance of somatic embryogenic tissues in 14 out of 16 tested cultivars of sweet potato [Ipomoea batatas (L.) Lam]. Both the size of the axillary bud explant and the type of auxin were found to be critical for the successful induction of somatic embryogenesis. Of the five auxins screened 2,4-dichlorophenoxyacetic acid 2,4-D and 2,4,5-trichlorophenoxyacetic acid were the most effective, with use of the latter inducing the production of embryogenic tissues in 7 cultivars which responded poorly or not at all to 2,4-D. Procedures for secondary/cyclic embryogenesis, formation of mature embryos and their conversion to plants are also described. Received: 24 September 1996 / Revision received: 16 December 1996 / Accepted 27 January 1997  相似文献   

16.
In this paper we present a method for the generation of randomly amplified polymorphic DNA (RAPD) markers for sweet potato. These were applied to produce genetic fingerprints of six clonal cultivars and to estimate genetic distances between these cultivars. The level of polymorphism within the species was extremely high. From the 36-decamer random primers used, 170 fragments were amplified, of which 132 (77.6%) were polymorphic. Ten primers resulted in no detected amplification. Of the remaining 26 primers for which amplification was achieved, only one did not reveal polymorphism. Six primers used alone enabled the discrimination of all six genotypes. Pattern analysis, which employed both a classification and ordination method, enabled the grouping of cultivars and the identification of primers which gave greatest discrimination among the cultivars.  相似文献   

17.
18.
19.
Cell cultures of sweet potato grown in media containing sucrose, glucose, maltose, or starch secreted amylase into the growth medium. The growth rate of cells was not appreciably affected by the carbon source employed for growth, although cells grown on sucrose had a slightly longer lag period before exponential growth occurred. Amylase levels inside the cells were not affected by carbon source, but the amount of amylase released into the medium was drastically affected. Maltose-grown cells released the most amylase while sucrose-grown cells released the least. Cells grown in the light released about twice as much amylase as cells grown in the dark when grown on glucose, maltose, or starch.Three amylase electrophoretic forms were found in the storage root tissue from which all cultures were derived. Cells grown in culture exhibited either two or three amylase forms, depending on the carbon source. The slowest migrating root amylase was found only in cells grown on starch. The root amylase having intermediate mobility was present in all cultures, as was a form having higher mobility than the most mobile root form. The fastest migrating electrophoretic form from the root was not present in any of the cells.Paper No. 8466 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned.  相似文献   

20.
Embryogenic tissue of the sweet potato (Ipomoea batatas (L) LAM) genotype TIB 10 was established from in vitro axillary shoot tips on Murashige and Skoog (1962) medium supplemented with 5 M 2,4-dichlorophenoxyacetic acid. Embryogenic aggregates of fresh mass 9.0–12 mg were subjected to a rapid freezing protocol in liquid nitrogen following sucrose preculture and varying degrees of dehydration. Up to 50% of embryogenic explants survived rapid freezing after preculture on 0.4 or 0.7M sucrose only. Dehydration with silica gel to moisture contents in the range 18–41% improved the survival after cryopreservation of embryogenic tissue. Tissue dehydrated for intermediate periods exhibited poor survival. Following freezing, embryogenic tissue appeared to develop normally, retaining its competence to produce mature embryos and plantlets.Abbreviations BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号