首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trunk electromyographic signals (EMG) are often contaminated with heart muscle electrical activity (ECG) due to the proximity of the collection sites to the heart and the volume conduction characteristics of the ECG through the torso. Few studies have quantified ECG removal techniques relative to an uncontaminated EMG signal (gold standard or criterion measure), or made direct comparisons between different methods for a given set of data. Understanding the impacts of both untreated contaminated EMG and ECG elimination techniques on the amplitude and frequency parameters is vital given the widespread use of EMG. The purpose of this study was to evaluate four groups of current and commonly used techniques for the removal of ECG contamination from EMG signals. ECG recordings at two intensity levels (rest and 50% maximum predicted heart rate) were superimposed on 11 uncontaminated biceps brachii EMG signals (rest, 7 isometric and 3 isoinertial levels). The 23 removal methods used were high pass digital filtering (finite impulse response (FIR) using a Hamming window, and fourth-order Butterworth (BW) filter) at five cutoff frequencies (20, 30, 40, 50, and 60 Hz), template techniques (template subtraction and an amplitude gating template), combinations of the subtraction template and high pass digital filtering, and a frequency subtraction/signal reconstruction method. For muscle activation levels between 10% and 25% of maximum voluntary contraction, the template subtraction and BW filter with a 30 Hz cutoff were the two best methods for maximal ECG removal with minimal EMG distortion. The BW filter with a 30 Hz cutoff provided the optimal balance between ease of implementation, time investment, and performance across all contractions and heart rate levels for the EMG levels evaluated in this study.  相似文献   

2.
The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180 Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs.  相似文献   

3.
Series of a notch noise with regular shifts of the notch center frequency: one--from low frequencies to high frequencies and the other--from high frequencies to the low, were synthesized. The notch noise series imitated sound source vertical moving. Single neuron's responses of inferior colliculus of the house mouse (Mus musculus) to the notch-noises altered with notch central frequency varying through excitatory and inhibitory frequency response areas in neurones' receptive fields. The neural responses alteration to the notch noise varying depended on the bandwidth of notch. Disinhibition in inhibitory side band could be higher if the notch overlying the inhibitory areas followed the notch overlying the excitatory areas. The data obtained make it possible to consider the excitatory and inhibitory interaction as a mechanism of neural sensitivity to the notch moving direction. Neurones' response set could provide information about sound source moving over auditory space.  相似文献   

4.
Y. Slim  K. Raoof 《IRBM》2010,31(4):209-220
The signal to noise ratio (SNR) of surface respiratory electromyography signal is very low. Indeed EMG signal is contaminated by different types of noise especially the cardiac artefact ECG. This article explores the problem of removing ECG artefact from respiratory EMG signal. The new method uses an adaptive structure with an electrocardyographic ECG reference signal carried out by wavelet decomposition. The proposed algorithm requires only one channel to both estimating the adaptive filter input reference noise and the respiratory EMG signal. This new technique demonstrates how two steps will be combined: the first step decomposes the signal with forward discrete wavelet transform into sub-bands to get the wavelet coefficients. Then, an improved soft thresholding function was applied. And the ECG input reference signal is reconstructed with the transformed coefficients whereas, the second uses an adaptive filter especially the LMS one to remove the ECG signal. After trying statistical as well as mathematical analysis, the complete investigation ensures that all details and steps make proof that our rigorous method is appropriate. Compared to the results obtained using previous techniques, the results achieved using the new algorithm show a significant improvement in the efficiency of the ECG rejection.  相似文献   

5.
It was found that, at a test bandwidth range of 50 Hz, 100% speech intelligibility is retained in naive subjects when, on average, 950 Hz is removed from each subsequent 1000-Hz bandwidth. Thus, speech is 95% redundant with respect to the spectral content. The parameters of the comb filter were chosen from measurements of speech intelligibility in experienced subjects, at which no one subject with normal hearing taking part in the experiment for the first time exhibited 100% intelligibility. Two methods of learning to perceive spectrally deprived speech signals are compared: (1) aurally only and (2) with visual enhancement. In the latter case, speech intelligibility is significantly higher. The possibility of using a spectrally deprived speech signal to develop and assess the efficiency of auditory rehabilitation of implanted patients is discussed.  相似文献   

6.

Background  

Modern biomedical amplifiers have a very high common mode rejection ratio. Nevertheless, recordings are often contaminated by residual power-line interference. Traditional analogue and digital filters are known to suppress ECG components near to the power-line frequency. Different types of digital notch filters are widely used despite their inherent contradiction: tolerable signal distortion needs a narrow frequency band, which leads to ineffective filtering in cases of larger frequency deviation of the interference. Adaptive filtering introduces unacceptable transient response time, especially after steep and large QRS complexes. Other available techniques such as Fourier transform do not work in real time. The subtraction procedure is found to cope better with this problem.  相似文献   

7.
We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG). In the first experiment, five acoustic masking stimuli (MS), consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB) by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch). N1m and auditory steady state responses (ASSR), evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF) in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.  相似文献   

8.
Isometric force- or torque-time parameters are commonly reported in the research literature. The processing methods of the electronic dynamometer-derived signal may influence the outcome measures. This study determined the influence of filtering and sample rate (SR) on isometric torque-time parameters and provides specific signal processing recommendations for future studies. Twenty-three subjects performed 49 isometric maximum voluntary contractions (MVCs) of the knee extensors on an isokinetic dynamometer. Outcome measures included peak torque (PT), and rate of torque development at peak (RTDPEAK), 50 (RTD50) and 200 (RTD200) ms for seven filter conditions including low-pass filter cutoffs at 5, 10, 20, 50, 100 and 150 Hz and a notch filter at 100 and 200 Hz. Comparisons were also made across four SR conditions at 100, 500, 1000 and 2000 Hz. The RTDPEAK variable was markedly changed (−5.4 to −37.9%) for all filter frequencies compared to the 150 Hz condition and the RTD50 variable was altered for all frequencies between 50 and 5 Hz. No differences were found for RTD200. For SR, compared to the 2000 Hz condition, differences were revealed for the 100 Hz condition for the RTDPEAK and RTD50 variables. The filtering or SR did not alter PT across any of the conditions. The filter and SR applied to the signal was capable of distorting the MVC signal and skewing the torque–time parameters, specifically for the early and maximum RTD variables of the MVC curve (RTD50 and RTDPEAK). For traditional isokinetic dynamometers, a low-pass filter cutoff of 150 Hz and a SR of at least 1000 Hz is recommended when assessing early isometric force- or torque-time MVC parameters.  相似文献   

9.
Offshore anthropogenic activities often produce high levels of noise below 1000 Hz, which can be serious threats to aquatic crustaceans based on the knowledge about their acoustic sensitive bandwidth. This study simulated noise with main frequency band similar to common underwater engineering noises, and examined its effects on movement behavior and physiological response, indicated by heat shock protein 70 (HSP70) gene expression, of the mud crab Scylla paramamosain. Experiments were conducted in the tanks, equipped with hydrophone, transducer, and video recording system, using juvenile S. paramamosain. Three acoustic stimulations with ascending levels were separately imposed on the animals. Results showed that the linear sweep with the sound power spectral density greater than 110 dB re 1μPa2/Hz in total bandwidth (100–1000 Hz), and 155 dB re 1μPa2/Hz within 600–800 Hz, could increase locomotor activities and HSP70 gene expression significantly.  相似文献   

10.
Signal degradation and an array size dictated by the number of available interconnects are the two main limitations inherent to standalone microelectrode arrays (MEAs). A new biochip consisting of an array of microelectrodes with fully-integrated analog and digital circuitry realized in an industrial CMOS process addresses these issues. The device is capable of on-chip signal filtering for improved signal-to-noise ratio (SNR), on-chip analog and digital conversion, and multiplexing, thereby facilitating simultaneous stimulation and recording of electrogenic cell activity. The designed electrode pitch of 250 microm significantly limits the space available for circuitry: a repeated unit of circuitry associated with each electrode comprises a stimulation buffer and a bandpass filter for readout. The bandpass filter has corner frequencies of 100 Hz and 50 kHz, and a gain of 1000. Stimulation voltages are generated from an 8-bit digital signal and converted to an analog signal at a frequency of 120 kHz. Functionality of the read-out circuitry is demonstrated by the measurement of cardiomyocyte activity. The microelectrode is realized in a shifted design for flexibility and biocompatibility. Several microelectrode materials (platinum, platinum black and titanium nitride) have been electrically characterized. An equivalent circuit model, where each parameter represents a macroscopic physical quantity contributing to the interface impedance, has been successfully fitted to experimental results.  相似文献   

11.
This study reports on a novel method to detect and reduce the contribution of movement artifact (MA) in electrocardiogram (ECG) recordings gathered from horses in free movement conditions. We propose a model that integrates cardiovascular and movement information to estimate the MA contribution. Specifically, ECG and physical activity are continuously acquired from seven horses through a wearable system. Such a system employs completely integrated textile electrodes to monitor ECG and is also equipped with a triaxial accelerometer for movement monitoring. In the literature, the most used technique to remove movement artifacts, when noise bandwidth overlaps the primary source bandwidth, is the adaptive filter. In this study we propose a new algorithm, hereinafter called Stationary Wavelet Movement Artifact Reduction (SWMAR), where the Stationary Wavelet Transform (SWT) decomposition algorithm is employed to identify and remove movement artifacts from ECG signals in horses. A comparative analysis with the Normalized Least Mean Square Adaptive Filter technique (NLMSAF) is performed as well. Results achieved on seven hours of recordings showed a reduction greater than 40% of MA percentage (between before- and after- the application of the proposed algorithm). Moreover, the comparative analysis with the NLMSAF, applied to the same ECG recordings, showed a greater reduction of MA percentage in favour of SWMAR with a statistical significant difference (pvalue < 0.0.5).  相似文献   

12.
正常家鸽的宽频带心电图时域值和功率谱   总被引:2,自引:0,他引:2  
Ai HB  Zhang XY  Zhu JP  Qiu J  Wang YH 《生理学报》2003,55(5):607-611
实验用南京新博公司生产的NHE-1000型宽频带心电信息检测分析仪,研究了正常家鸽宽频带心电图(WFB-ECG)的时域值和QRS波群的功率谱。主要结果如下:(1)Ⅱ、Ⅲ、aVF导联,QRS波群均为主波向下,形成rS或 rSr’型,无Q波,与人类相应导联的心电图波形相反;S波的升支均有一较大的切迹(无一例外),Ⅱ导联切迹幅度为 0.413±0.133mV,宽度为9.733±1.291ms;Ⅱ、Ⅲ、aVF导联T波直立,方向均与主波相反门(1例除外)。aVR导联,QRS波群主波向上,形成Rs型,T波倒置,与主波方向相反(无一例外),也与人类aVR导联的波形相反。(2)P波时程与P-R段之比值为0.8,而人的为1.0-1.6,小鼠的为0.4。(3)Ⅱ导联QRS波群的功率谱特点:以低频信号(低于80 HZ)为主,而高频频段的相对能量比小鼠的低,比人的高,其中高频频段100-1000 Hz的相对能量为(10.181±7.443)%,80-300HZ为(15.418±10.579)%。(4)QRS波群的额面心电轴为-118°±10°(-96°~-136°);(5)心电向量环的位置与人类的相反,位于-90°~-180°相限。这些现象的产生原因可能是由于家鸽心室 Purkinje纤维末梢延伸到心外膜下心肌,导致心外膜下心肌先除极化,心内膜下心肌后除极化而产生的。  相似文献   

13.
Motion artifact resulting from electrode and patient movement is a significant source of noise in ECG, EEG, EMG, and impedance pneumography recording. Noise resulting from motion is particularly troublesome in ambulatory ECG recordings, such as those made during Holter monitoring or stress tests, because the bandwidth of the motion artifact overlaps with the ECG signal bandwidth. The authors investigated the effect of an adaptive motion-artifact removal algorithm on the performance of a standard QRS detector. They made four ECG recordings on each of the three subjects while manually generating artifact. Adaptive noise removal was applied to the ECG signal using a skin-stretch signal as the noise reference. Adaptive noise removal reduced the number of false QRS detections in the records from 380 to 104, for an average reduction in false detections of 72.6%. False-detection reductions for individual records ranged from 12% to 93%.  相似文献   

14.
Frequency selectivity of single auditory nerve fibers in the rat was studied using pseudorandom noise based on ternary m-sequences as the stimulus, and the results were compared to those of earlier studies in which noise based on binary m-sequences was used. Pseudorandom noise based on ternary m-sequences has fewer anomalies than noise based on binary m-sequences. Detailed tests using linear and nonlinear filters showed that the present method provides accurate measures of bandwidth and center frequency. Period histograms of the response, locked to the periodicity of the noise, were cross-correlated with one period of the noise to obtain estimates of the impulse response function of the peripheral auditory system. Fourier transforms of these cross-correlograms were used as estimates of the filter function of single auditory nerve fibers. The results obtained using ternary noise were not different from previous results showing a downward shift in center frequency and increase in bandwidth with increasing stimulus intensity for fibers with center frequencies between 1000 and 5000 Hz. The difference between spectral selectivity based on phase-locked responses and that based on discharge rate is discussed.  相似文献   

15.
针对心电信号处理过程中的心电信号数字滤波、心电波形的动态显示、心电数据存储等问题,阐述了3个可用于心电信号实时处理的方法:一是运用滤波器频谱的周期性减少了滤波器系数个数,提高了运算速度,并根据卷积公式特点实现了数字滤波的实时性;二是运用基于内存虚拟屏幕技术实现心电波形动态显示,解决了屏幕闪烁和绘图不连续问题;三是采用嵌入式数据库SQLITE实现了心电数据存储。所有方法均考虑实时性要求,并已成功用于课题组开发的便携式心电监护仪,效果较为理想,具有很强的实用价值。  相似文献   

16.
The authors measured the noise and impedance from face-to-face Ag-AgCl electrode pairs, as well as the noise from Ag-AgCl electrodes placed on the human body surface, in the frequency band from 0.5 Hz to 500 Hz, which corresponds to high-resolution ECG measurements. Electrode noise and electrode impedance were measured simultaneously to compare electrode noise with the thermal noise from the real part of electrode impedance. The results show that electrode noise depends on electrode area, electrolytic gel, the patient, and the placement site. In the frequency band from 0.5 Hz to 500 Hz, root-mean-square electrode noise is typically less than 1 microV for electrodes placed face-to-face and ranges from 1 microV to 15 microV for electrodes on the body surface. The noise spectral density increases at low frequencies as 1/fa and it is always higher than the thermal noise from the real part of the electrode impedance. There is a high correlation between electrode dc offset voltage and electrode noise. Thus, offset voltage measurements allow identification of noise from low-noise electrodes.  相似文献   

17.
Abstract Prediction of countershock success from ventricular fibrillation (VF) ECG is a major challenge in critical care medicine. Recent findings indicate that stable, high frequency mother rotors are one possible mechanism maintaining VF. A computer model study was performed to investigate how epicardiac sources are reflected in the ECG. In the cardiac tissues of two computer models - a model with cubic geometry and a simplified torso model with a left ventricle - a mother rotor was induced by increasing the potassium rectifier current. On the epicardium, the dominant frequency (DF) map revealed a constant DF of 23 Hz (cubic model) and 24.4 Hz (torso model) in the region of the mother rotor, respectively. A sharp drop of frequency (3-18 Hz in the cubic model and 12.4-18 Hz in the torso model) occurred in the surrounding epicardial tissue of chaotic fibrillatory conduction. While no organized pattern was observable on the body surface of the cubic model, the mother rotor frequency can be identified in the anterior surface of the torso model because of the chosen position of the mother rotor in the ventricle (shortest distance to the body surface). Nevertheless, the DFs were damped on the body surfaces of both models (4.6-8.5 Hz in the cubic model and 14.4-16.4 Hz in the torso model). Thus, it was shown in this computer model study that wave propagation transforms the spatial low pass filtering of the thorax into a temporal low pass. In contrast to the resistive-capacitive low pass filter formed by the tissue, this spatial-temporal low pass filter becomes effective at low frequencies (tens of Hertz). This effect damps the high frequency components arising from the heart and it hampers a direct observation of rapid, organized sources of VF in the ECGs, when in an emergency case an artifact-free recording is not possible.  相似文献   

18.
Numerous speech processing techniques have been applied to assist hearing-impaired subjects with extreme high-frequency hearing losses who can be helped only to a limited degree with conventional hearing aids. The results of providing this class of deaf subjects with a speech encoding hearing aid, which is able to reproduce intelligible speech for their particular needs, have generally been disappointing. There are at least four problems related to bandwidth compression applied to the voiced portion of speech: (1) the problem of pitch extraction in real time; (2) pitch extraction under realistic listening conditions, i.e. when competing speech and noise sources are present; (3) an insufficient data base for successful compression of voiced speech; and (4) the introduction of undesirable spectral energies in the bandwidth-compressed signal, due to the compression process itself. Experiments seem to indicate that voiced speech segments bandwidth limited to f = 1000 Hz, even at a loss of higher formant frequencies, is in most instances superior in intelligibility compared to bandwidth-compressed voiced speech segments of the same bandwidth, even if pitch can be extracted with no error. With the added complexity of real-time pitch extraction which has to function in actual listening conditions, it is doubtful that a speech encoding hearing aid, based on bandwidth compression on the voiced portion of speech, could be successfully implemented. However, if bandwidth compression is applied to the unvoiced portions of speech only, the above limitations can be overcome (1).  相似文献   

19.
Compact digital storage of ECG's.   总被引:2,自引:0,他引:2  
The technique of predictive coding is applied to the problem of reversible compression of digitized electrocardiograms. Integer-based predictors and MMSE predictors are studied as regards performance at varying sampling rates and digital resolutions for both long-term ECGs and ECGs recorded at rest. It is concluded that MMSE predictors are to be preferred only in the case when the ECG is oversampled (i.e., the sampling rate is much higher than twice the cut-off frequency of the presampling filter). In other cases the integer predictor which yields the so-called 2nd differences is superior. The problem of encoding the resulting residuals with a variable-length code is studied for long-term ECGs digitized at 100 Hz and using 8 bits digital resolution. The code has a simple struture leading to speed of execution while the efficiency loss is small.  相似文献   

20.
In recent years manufacturers of intensive care monitoring systems have introduced complex digital processing architectures that theoretically have enormous processing power. This power should allow the realization of many useful processing methodologies that up to now have only been research tools, e.g. the generation of reliable alarms, the implementation of predictive monitoring strategies and reliable diagnostic and treatment guidance to the clinical staff. However, before any of these methodologies can be successfully initiated, each must have accurate and relaible derived physiological data available to them, e.g. beat-by-beat heart rate and blood pressure. From the very nature of monitoring physiological quantities there will be much misinformation or ‘noise’ superimposed on the raw signal obtained from the patient. The major source of noise (as far as electocardiogram (ECG) monitoring is concerned) is internal to the body and is electromyographic noise. This results from the contraction of skeletal muscles producing action potentials of similar magnitude and frequency to that of the ECG. Fortunately, nursing staff are very good at ‘filtering out’ any misinformation before recording any data (on a ward chart for instance). However, in completely automated systems, if this noise is not detected and eliminated or compensated for at an early stage in the processing chain, misinformation will result with potentially serious consequences. The recognition and elimination of such noise cannot be readily achieved using standard filtering techniques without serious degradation of information. This paper discusses the potential of modern digital system architectures developed for ECG monitoring. It analyses the noise that occurs on this physiological variable and demonstrates a novel method of eliminating such noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号