首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurately describing trunk muscle coactivation is fundamental to quantifying the spine reaction forces that occur during lifting tasks and has been the focus of a great deal of research in the spine biomechanics literature. One limitation of previous approaches has been a lack of consideration given to the variability in these coactivation strategies. The research presented in this paper is an empirical approach to quantifying and modeling trunk muscle coactivation using simulation input modeling techniques. Electromyographic (EMG) data were collected from 28 human subjects as they performed controlled trunk extension exertions. These exertions included isokinetic (10 and 45°/s) and constant acceleration (50°/s/s) trunk extensions in symmetric and asymmetric (30°) postures at two levels of trunk extension moment (30 and 80 Nm). The EMG data were collected from the right and left pairs of the erector spinae, latissimus dorsi, rectus abdominis, external obliques and internal obliques. Each subject performed nine repetitions of each combination of independent variables. The data collected during these trials were used to develop marginal distributions of trunk muscle activity as well as a 10×10 correlation matrix that described how the muscles cooperated to produce these extension torques. These elements were then combined to generate multivariate distributions describing the coactivation of the trunk musculature. An analysis of these distributions revealed that increases in extension moment, extension velocity and sagittal flexion angle created increases in both the mean and the variance of the distributions of the muscular response, while increases in the rate of trunk extension acceleration decreased both the mean and variance of the distributions of activity across all muscles considered. Increases in trunk asymmetry created a decrease in mean of the ipsi–lateral erector spinae and an increase in the mean of all other muscles considered, but there was little change in the variance of these distributions as a function of asymmetry.  相似文献   

2.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

3.
MVC techniques to normalize trunk muscle EMG in healthy women   总被引:1,自引:0,他引:1  
Normalization of the surface electromyogram (EMG) addresses some of the inherent inter-subject and inter-muscular variability of this signal to enable comparison between muscles and people. The aim of this study was to evaluate the effectiveness of several maximal voluntary isometric contraction (MVC) strategies, and identify maximum electromyographic reference values used for normalizing trunk muscle activity. Eight healthy women performed 11 MVC techniques, including trials in which thorax motion was resisted, trials in which pelvis motion was resisted, shoulder rotation and adduction, and un-resisted MVC maneuvers (maximal abdominal hollowing and maximal abdominal bracing). EMG signals were bilaterally collected from upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, latissimus dorsi, and erector spinae at T9 and L5. A 0.5 s moving average window was used to calculate the maximum EMG amplitude of each muscle for each MVC technique. A great inter-subject variability between participants was observed as to which MVC strategy elicited the greatest muscular activity, especially for the oblique abdominals and latissimus dorsi. Since no single test was superior for obtaining maximum electrical activity, it appears that several upper and lower trunk MVC techniques should be performed for EMG normalization in healthy women.  相似文献   

4.
The use of electromyographic signals in the modeling of muscle forces and joint loads requires an assumption of the relationship between EMG and muscle force. This relationship has been studied for the trunk musculature and been shown to be predominantly non-linear, with more EMG producing less torque output at higher levels of activation. However, agonist-antagonist muscle co-activation is often substantial during trunk exertions, yet has not been adequately accounted for in determining such relationships. The purpose of this study was to revisit the EMG-moment relationship of the trunk recognizing the additional moment requirements necessitated due to antagonist muscle activity. Eight participants generated a series of isometric ramped trunk flexor and extensor moment contractions. EMG was recorded from 14 torso muscles, and the externally resisted moment was calculated. Agonist muscle moments (either flexor or extensor) were estimated from an anatomically detailed biomechanical model of the spine and fit to: the externally calculated moment alone; the externally calculated moment combined with the antagonist muscle moment. When antagonist activity was ignored, the EMG-moment relationship was found to be non-linear, similar to previous work. However, when accounting for the additional muscle torque generated by the antagonist muscle groups, the relationships became, in three of the four conditions, more linear. Therefore, it was concluded that antagonist muscle co-activation must be included when determining the EMG-moment relationship of trunk muscles and that previous impressions of non-linear EMG-force relationships should be revisited.  相似文献   

5.
Experiments were performed on 20 New Zealand White male rabbits. Our hypotheses were that (1) latissimus dorsi (LTD) muscles transplanted into the site of a bipennate rectus femoris (RFM) muscle with neurovascular repair would retain their parallel-fibered structure and (2) the parallel-fibered structure of latissimus dorsi grafts would reduce their total fiber cross-sectional area and adversely affect force development relative to that of bipennate rectus femoris grafts and muscles. Compared with their respective donor muscles, 120 to 150 days after grafting, latissimus dorsi and rectus femoris grafts showed no change in the number of fibers and a decrease in the mean single-fiber cross-sectional area to approximately 70 percent. The latissimus dorsi grafts, which remained parallel-fibered, developed maximum forces 34 and 23 percent of the values for fully activated rectus femoris grafts and muscles, respectively. The deficit in the maximum force of the latissimus dorsi grafts resulted primarily from the smaller total-fiber cross-sectional area as a result of the parallel-fibered structure.  相似文献   

6.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

7.
The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior–posterior translations, medial–lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial–lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior–posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired.  相似文献   

8.
Forces at different heights and orientations are often carried by hands while performing occupational tasks. Trunk muscle activity and spinal loads are likely dependent on not only moments but also the orientation and height of these forces. Here, we measured trunk kinematics and select superficial muscle activity of 12 asymptomatic subjects while supporting forces in hands in upright standing. Magnitude of forces in 5 orientations (−25°, 0°, 25°, 50° and 90°) and 2 heights (20 cm and 40 cm) were adjusted to generate flexion moments of 15, 30 and 45 N m at the L5-S1 disc centre. External forces were of much greater magnitude when applied at lower elevation or oriented upward at 25°. Spinal kinematics remained nearly unchanged in various tasks.Changes in orientation and elevation of external forces substantially influenced the recorded EMG, despite similar trunk posture and identical moments at the L5-S1. Greater EMG activity was overall recorded under larger forces albeit constant moment. Increases in the external moment at the L5-S1 substantially increased EMG in extensor muscles (p < 0.001) but had little effect on abdominals; e.g., mean longissimus EMG for all orientations increased by 38% and 75% as the moment level altered from 15 N m to 30 N m and to 45 N m while that in the rectus abdominus increased only by 2% and 4%, respectively. Under 45 N m moment and as the load orientation altered from 90° to 50°, 25°, 0° and −25°, mean EMG dropped by 3%, 12%, 12% and 1% in back muscles and by 17%, 17%, 19% and 13% in abdominals, respectively. As the load elevation increased from 20 cm to 40 cm, mean EMG under maximum moment decreased by 21% in back muscles and by 17% in abdominals.Due to the lack of EMG recording of deep lumbar muscles, changes in relative shear/compression components and different net moments at cranial discs despite identical moments at the caudal L5-S1 disc, complementary model studies are essential for a better comprehension of neuromuscular strategies in response to alterations in load height and orientation.  相似文献   

9.
The latissimus dorsi muscle flap is a versatile flap used in a variety of reconstructive procedures. The major complication reported with its use is donor-site seroma, reported to occur in 20 to 79 percent of cases. A retrospective review of 47 patients undergoing latissimus dorsi muscle harvest from April of 1998 through May of 2002 was performed. Progressive tension sutures were used during donor-site closure in 22 patients from March of 2000 through May of 2002. This group was compared with historical controls from April of 1998 through March of 2000 (n = 23) who underwent latissimus dorsi harvest without use of the technique. Seven of 23 controls (30 percent) developed seromas at the donor site, compared with 0 of 22 (Fisher's exact text, p = 0.0092). The authors conclude that use of progressive tension sutures placed at the time of donor-site closure is an effective method to reduce or eliminate the most common complication associated with latissimus dorsi harvest. Technique recommendations are reviewed.  相似文献   

10.
(1.) To test the sensitivity to electric current of the latissimus dorsi and, therefore, its ability to yield action potential, we have studied the effect of curarisation on the amplitude of the isometric tetanus during "massive" stimulations by alternative current. (2.) Curarisation causes a considerable but reversible reduction of the tetanic tension of the latissimus dorsi anterior (L.D.A.) but has no effect on the tetanus of the latissimus dorsi posterior (L.D.P.). It is concluded that a part of the L.D.A. is not sensitive to electric current and is thus unable to yield action potentials, unlike the opinion of some authors. (3.) Rising the temperature has an inverse effect on the speed of the tetanus ascending phase, depending on whether the L.D.A. has been curarised or not. This show the existence of two types of excitation processes of very different nature in this muscle. (4.) Direct current is much less efficient than alternative current on the curarised L.D.A.  相似文献   

11.
As no study has examined whether the branches of the latissimus dorsi are activated differently in different exercises, we investigated intramuscular differences of components of the latissimus dorsi during various shoulder isometric exercises. Seventeen male subjects performed four isometric exercises: shoulder extension, adduction, internal rotation, and shoulder depression. Surface electromyography (sEMG) was used to collect data from the medial and lateral components of the latissimus dorsi during the isometric exercises. Two-way repeated analysis of variance with two within-subject factors (exercise condition and muscle branch) was used to determine the significance of differences between the branches, and which branch was activated more with the exercise variation. The root mean squared sEMG values for the muscles were normalized using the modified isolation equation (%Isolation) and maximum voluntary isometric contraction (%MVIC). Neither the %MVIC nor %Isolation data differed significantly between muscle branches, while there was a significant difference with exercise. %MVIC was significantly higher with shoulder extension, compared to the other isometric exercises. There was a significant correlation between exercise condition and muscle branch in the %Isolation data. Shoulder extension and adduction and internal rotation increased %Isolation of the medial latissimus dorsi more than shoulder depression. Shoulder depression had the highest value of %Isolation of the lateral latissimus dorsi compared to the other isometric exercises. Comparing the medial and lateral latissimus dorsi, the medial component was predominantly activated with shoulder extension, adduction, and internal rotation, and the lateral component with shoulder depression. Shoulder extension is effective for activating the latissimus dorsi regardless of the intramuscular branch.  相似文献   

12.
A wide range of loading conditions involving external forces with varying magnitudes, orientations and locations are encountered in daily activities. Here we computed the effect on trunk biomechanics of changes in force location (two levels) and orientation (5 values) in 4 subjects in upright standing while maintaining identical external moment of 15 Nm, 30 N m or 45 Nm at the L5–S1. Driven by measured kinematics and gravity/external loads, the finite element models yielded substantially different trunk neuromuscular response with moderate alterations (up to 24% under 45 Nm moment) in spinal loads as the load orientation varied. Under identical moments, compression and shear forces at the L5–S1 as well as forces in extensor thoracic muscles progressively decreased as orientation of external forces varied from downward gravity (90°) all the way to upward (−25°) orientation. In contrast, forces in local lumbar muscles followed reverse trends. Under larger horizontal forces at a lower elevation, lumbar muscles were much more active whereas extensor thoracic muscle forces were greater under smaller forces at a higher elevation. Despite such differences in activity pattern, the spinal forces remained nearly identical (<6% under 45 Nm moment). The published recorded surface EMG data of extensor muscles trend-wise agreed with computed local muscle forces as horizontal load elevation varied but were overall different from results in both local and global muscles when load orientation altered. Predictions demonstrate the marked effect of external force orientation and elevation on the trunk neuromuscular response and spinal forces and questions attempts to estimate spinal loads based only on consideration of moments at a spinal level.  相似文献   

13.
A modified automatic freezing apparatus (K. M. Kretzschmar and D. R. Wilkie, 1962, J. Physiol. (London), 202, 66–67) was used for studying light chain phosphorylation during the early phase of contraction of the fast, posterior latissimus dorsi, and slow, anterior latissimus dorsi, muscles of chicken at 37 °C. The frozen muscles were worked up under conditions which avoid artifacts in quantitating the level of light chain phosphorylation in contracting and resting muscles. The posterior latissimus dorsi muscle reached 80% of its maximal isometric tension at 0.1 s of tetanic stimulation. At the same time, light chain phosphorylation increased by 60% of its maximal extent. The peak tension of the posterior muscle at 0.2 s of stimulation was accompanied by maximal light chain phosphorylation. In case of the slow anterior latissimus dorsi muscle, maximal tetanic tension was developed in 2.5 – 5 s and light chain phosphorylation also proceeded at a much slower rate than in the fast posterior muscle. When contralateral posterior latissimus dorsi muscles were stimulated for 0.2 s and one muscle was frozen at the height of tetanus while the other muscle was allowed to relax and frozen 0.4 s after terminating the stimulation, both contracted and relaxed muscles exhibited maximal light chain phosphorylation. However, when the muscle was allowed to relax for 0.8 s before freezing, half of the phosphorylated light chain became dephosphorylated. The resting level of phosphate content of the light chain was restored in both the posterior and anterior muscles during a longer time after relaxation.  相似文献   

14.
15.
Footwear devices that shift foot center of pressure (COP), thereby impacting lower-limb biomechanics to produce clinical benefit, have been studied regarding degenerative diseases of knee and hip joints, exhibiting evidence of clinical success. Ability to purposefully affect trunk biomechanics has not been investigated for this type of footwear. Fifteen healthy young male subjects underwent gait and electromyography analysis using a biomechanical device that shifts COP via moveable convex elements attached to the shoe sole. Analyses were performed in three COP configurations for pairwise comparison: (1) neutral (control) (2) laterally deviated, and (3) medially deviated. Sagittal and frontal-plane pelvis and spine kinematics, external oblique activity, and frontal and transverse-plane lumbar moments were affected by medio-lateral COP shift. Transverse-plane trunk kinematics, activity of the lumbar longissimus, latissimus dorsi, rectus abdominus, and quadratus lumborum, and sagittal-plane lumbar moment, were not significantly impacted. Two linear mixed effects models assessed predictive impact of (I) COP location, and (II) trunk kinematics and neuromuscular activity, on the significant lumbar moment parameters. The COP was a significant predictor of all modeled frontal and transverse-plane lumbar moment parameters, while pelvic and spine rotation, and lumbar longissimus activity were significant predictors of one frontal-plane lumbar moment parameter. Model results suggest that, although trunk biomechanics and muscle activity were altered by COP shift, COP offset influences lumbar kinetics directly, or via lower-limb changes not assessed in this study, but not by means of alteration of trunk kinematics or muscle activity. Further study may reveal implications in treatment of low back pain.  相似文献   

16.
This study compared the standing cable press (SCP) and the traditional bench press (BP) to better understand the biomechanical limitations of pushing from a standing position together with the activation amplitudes of trunk and shoulder muscles. A static biomechanical model (4D Watbak) was used to assess the forces that can be pushed with 2 arms in a standing position. Then, 14 recreationally trained men performed 1 repetition maximum (1RM) BP and 1RM single-arm SP exercises while superficial electromyography (EMG) of various shoulder and torso muscles was measured. The 1RM BP performance resulted in an average load (74.2 +/- 17.6 kg) significantly higher than 1RM single-arm SP (26.0 +/- 4.4 kg). In addition, the model predicted that pushing forces from a standing position under ideal mechanical conditions are limited to 40.8% of the subject's body weight. For the 1RM BP, anterior deltoid and pectoralis major were more activated than most of the trunk muscles. In contrast, for the 1RM single-arm SP, the left internal oblique and left latissimus dorsi activities were similar to those of the anterior deltoid and pectoralis major. The EMG amplitudes of pectoralis major and the erector muscles were larger for 1RM BP. Conversely, the activation levels of left abdominal muscles and left latissimus dorsi were higher for 1RM right-arm SP. The BP emphasizes the activation of the shoulder and chest muscles and challenges the capability to develop great shoulder torques. The SCP performance also relies on the strength of shoulder and chest musculature; however, it is whole-body stability and equilibrium together with joint stability that present the major limitation in force generation. Our EMG findings show that SCP performance is limited by the activation and neuromuscular coordination of torso muscles, not maximal muscle activation of the chest and shoulder muscles. This has implications for the utility of these exercise approaches to achieve different training goals.  相似文献   

17.
Although the mechanism by which vascular delay benefits skin flaps is not completely understood, this topic has been extensively studied and reported on in the literature. In contrast, little has been documented about the effects of vascular delay in skeletal muscle flaps. Recent animal studies tested the effectiveness of vascular delay to enhance latissimus dorsi muscle flap viability for use in cardiomyoplasty and found that it prevented distal flap necrosis. However, these studies did not define the optimal time period necessary to achieve this beneficial effect. The purpose of this study was to determine how many days of "delay" can elicit the beneficial effects of vascular delay on latissimus dorsi muscle flaps. To accomplish this, 90 latissimus dorsi muscles of 45 male Sprague-Dawley rats were randomly subjected to vascular delay on one side or a sham procedure on the other. After predetermined delay periods (0, 3, 7, 10, and 14 days) or a sham procedure, all latissimus dorsi muscles were elevated as single pedicled flaps based only on their thoracodorsal neurovascular pedicle. Latissimus dorsi muscle perfusion was measured using a Laser Doppler Perfusion Imager just before and immediately after flap elevation. The muscles were then returned to their original vascular beds, isolated from adjacent tissue with Silastic film, sutured into place to maintain their original size and shape, and left there for 5 days. After 5 days, the latissimus dorsi muscle flaps were dissected free, scanned again (Laser Doppler Perfusion Imager-perfusion measurements), and the area of distal necrosis was measured using digitized planimetry of magnified images. The authors' results showed that delay periods of 3, 7, 10, and 14 days significantly increased (p < 0.05) blood perfusion and decreased (p < 0.05) distal flap necrosis when compared with sham controls. On the basis of these findings, the authors conclude that in their rat latissimus dorsi muscle flap model the beneficial effects of vascular delay are present as early as 3 days. If these findings also hold true in humans, they could be useful in cardiomyoplasty by allowing surgeons to shorten the amount of time between the vascular delay procedure and the cardiomyoplasty procedure in these very sick patients.  相似文献   

18.
This study aimed at investigating the relationship between trunk and upper limb muscle coordination and stroke velocity during tennis forehand drive. The electromyographic (EMG) activity of ten trunk and dominant upper limb muscles was recorded in 21 male tennis players while performing five series of ten crosscourt forehand drives. The forehand drive velocity ranged from 60% to 100% of individual maximal velocity. The onset, offset and activation level were calculated for each muscle and each player. The analysis of muscle activation order showed no modification in the recruitment pattern regardless of the velocity. However, the increased velocity resulted in earlier activation of the erector spinae, latissimus dorsi and triceps brachii muscles, as well as later deactivation of the erector spinae, biceps brachii and flexor carpi radialis muscles. Finally, a higher level of activation was observed with the velocity increase in the external oblique, latissimus dorsi, middle deltoid, biceps brachii and triceps brachii. These results might bring new knowledge for strength and tennis coaches to improve resistance training protocols in a performance and prophylactic perspective.  相似文献   

19.
The aim of this study was to determine the effect of isometric pull down exercise on muscle activity with shoulder elevation angles of 60°, 90°, and 120° and sagittal, scapular, and frontal movement planes, by electromyography (EMG) of the latissimus dorsi, inferior fibers of trapezius, and latissimus dorsi/inferior fibers of trapezius activity ratio. Fourteen men performed nine conditions of isometric pull down exercise (three conditions of shoulder elevation × three conditions of movement planes). Surface EMG was used to collect data from the latissimus dorsi and inferior fibers of trapezius during exercise. Two-way repeated analysis of variance with two within-subject factors (shoulder elevation angles and planes of movement) was used to determine the significance of the latissimus dorsi and inferior fibers of trapezius activity and latissimus dorsi/inferior fibers of trapezius activity ratio. The latissimus dorsi activity and ratio between the latissimus dorsi and the inferior fibers of trapezius were significantly decreased as shoulder elevation angle increased from 60° to 120°. The inferior fibers of trapezius activity was significantly increased with shoulder elevation angle. The EMG activity and the ratios were not affected by changes in movement planes. This study suggests that selective activation of the latissimus dorsi is accomplished with a low shoulder elevation angle, while the inferior fibers of the trapezius are activated with high shoulder elevation angles.  相似文献   

20.
Large abdominal wall defects (ventral hernias) can be difficult to repair. Some defects are not amenable to primary repair or the use of synthetic mesh because of repeated recurrence or wound infection. In complicated situations such as that mentioned above, the extended latissimus dorsi muscle flap has been used to repair upper and middle abdominal wall defects. This method has been utilized in six patients, and there has been no recurrence of the defect or evidence of a lumbar hernia. The follow-up has been from 7 to 66 months. The extended latissimus dorsi muscle flap has proven to be an excellent alternative in the repair of complicated abdominal wall defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号