首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind Flow Characteristics on a Soybean Leaf Compared with a Leaf Model   总被引:2,自引:0,他引:2  
The purpose of this paper is to describe momentum boundary layer flow parameters on a soybean leaf [Glycine max (L.) Merrill] at various velocities of the bulk air stream and these data are compared with similar measurements on an artificial leaf. The wind structure is measured at three different bulk air velocitìes (u= 39, 148 and 271 centimeters per second) on an individual soybean leaf and is compared to structural effects on an artificial leaf (flat metal plate) in a small closed-circuit wind tunnel. The boundary layers were homogeneous for the metal plate, but only at the lower velocity for the soybean leaf. The boundary layer thicknesses decrease with increasing bulk air velocity for laminar flow regimes, whereas in the turbulent flow regime the boundary layer thickness greatly increases. The effect of turbulence on the soybean leaf boundary layer made the eddy diffusivities at least three times greater than in the laminar flow regime at the calculated roughness height above the leaf surface. The structure of the leaf boundary layer flow is comparable to that of the metal plate only at the lower bulk air velocity.  相似文献   

2.
There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.  相似文献   

3.
Water transport in the arterial wall is studied using a mathematical model based on the theory for the consolidation of water saturated soils (Biot, 1941; Kenyon, 1976a). The intimal pressure is considered to be harmonic in time. Analytical results are obtained for both large and small consolidation times since both the situations are of physiological relevance. For large consolidation times, the filtration is confined to a thin boundary layer. Large pressure gradients exist within the boundary layer while the pressure gradient is negligible in the intermediate layer. Thus, the pulsatile flow is found to be confined to the boundary layer while a smaller mean flow exists throughout the wall.  相似文献   

4.
There are many different antennal morphologies for insects, yet they all have the same functional role in olfaction. Chemical signals are dispersed through two physical forces; diffusion and fluid flow. The interaction between antennal morphology and fluid flow generates a region of changing flow velocity called the boundary layer. The boundary layer determines signal dispersion dynamics and therefore influences the signal structure and information that arrives at the receptor cells. To investigate how the boundary layer changes the information in the signals arriving at receptor cells, we measured chemical dynamics within the boundary layer around the bee antennae using microelectrodes. We used two types of chemical signals: pulsed and continuous. The results showed that the boundary layer increased the decay time of the chemical signal for the pulsatile stimuli and increased the peak height for the continuous data. Spectral analysis of continuous signals showed that the temporal aspects of the chemical signal are changed by the boundary layer. Particularly the temporal dynamics of the signal are dampened at the slowest flow speed and amplified at the intermediate and fast flow speeds. By altering the structure of the chemical signal, the morphology will function as a sensory filter.  相似文献   

5.
Every chemosensory structure has a boundary layer surroundingit through which chemical signals must pass before contactingreceptor cells. Fluid motion in this boundary layer is slowand odor movement is mainly by diffusion. The boundary layerstructure depends upon external fluid velocities and the morphologyof the appendage. High-speed (10–200 Hz) electrochemicalrecordings from microchemical electrodes were used to quantifychemical transport in the microscale environment of three morphologicallydifferent chemosensory appendages of the lobster, Homarus americanus:lateral antennule, medial antennule and walking legs. Controlledpulses of the odor tracer (dopamine) were delivered to the threeappendages at three different flow speeds (0, 3, 6 cm/s). Theamplitudes of the pulses increased with increasing flow speed,indicating that boundary layer thickness decreased with increasingflow speed. Larger pulse amplitudes were measured in the walkinglegs than in the lateral or medial antennules at all flow speeds.In addition, larger amplitudes were recorded in the medial antennulethan the lateral antennule. Changes in pulse amplitude withincreasing flow speed were larger than changes in pulse duration.These results demonstrate that pulse amplitude is affected morethan pulse duration by boundary layer thickness and that themorphology of the receptor strucure helps determine the structureof signals arriving at receptor cells. This may explain whyanimals have adopted sampling strategies that reduce boundarylayer thickness.  相似文献   

6.
The staining kinetics of single cells have been investigated using a perfusion cuvette in combination with a computer controlled microscope spectrometer. The physicochemical hydrodynamics of staining are characterized. Using a steady-state laminar flow parallel to the cell surface a hydrodynamic and a diffusional boundary layer are observed which are determined by the flow rate. The thickness of the diffusional boundary layer revealed by experimental data is in agreement with theoretically calculated values. At certain well-defined hydrodynamic conditions convective diffusion has no further effect on the staining rate.  相似文献   

7.
A new one-dimensional model is presented for the calculation of steady and unsteady flow through an indented two-dimensional channel with separation and reattachment. It is based on an interactive boundary layer approach, where the equations for the boundary layer flow near the channel walls and for an inviscid core flow are solved simultaneously. This approach requires no semi-empirical inputs, such as the location of separation and reattachment, which is an advantage over other existing one-dimensional models. Because of the need of an inviscid core alongside the boundary layers, the type of inflow as well as the length of the channel and the value of the Reynolds number poses some limitations on the use of the new model. Results have been obtained for steady flow through the indented channel of Ikeda and Matsuzaki. In further perspective, it is discussed how the present model, in contrast to other one-dimensional flow models, can be extended to calculate the flow in nonsymmetrical channels, by considering different boundary layers on each of the walls.  相似文献   

8.
A novel method is used to demonstrate the presence of diffusion boundary layers around erythrocytes following rapid mixing in a stopped-flow spectrophotometer and to estimate the apparent dimensions of the diffusion boundary layers. Pink erythrocyte ghosts labeled on their external surfaces with tetramethyl rhodamine isothiocyanate (TRITC) were mixed in a stopped-flow apparatus with 50 mM NaI in Ringer's solutions. I- is an effective collisional quencher of TRITC fluorescence. TRITC fluorescence after flow stopped decreased monoexponentially with time. The concentration of I- at the cell surface as a function of time was estimated from the dependence of TRITC fluorescence on I- concentration in steady-state experiments. The kinetics of the increase in I- concentration at the cell surface was fit to two diffusional models: a planar erythrocyte ghost bounded by planar diffusion boundary layer and a spherical erythrocyte surrounded by a spherical shell diffusion boundary layer. The planar model best fits the experimental data with a diffusion boundary layer 4.68 microns thick. Using the spherical model the experimental data is best fit by a 6.9 microns diffusion boundary layer.  相似文献   

9.
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.  相似文献   

10.
The Boundary Layer over a Populus Leaf   总被引:6,自引:0,他引:6  
Air flow over a Populus leaf was investigated using a hot-wireanemometer. When the air flow in the wind tunnel was laminar,the boundary layer was often turbulent at a wind speed of only1.5 m s–1, particularly when encouraged by uneven topographyand roughness of the surface, as on the lower side of the leaf.The smoother upper surface behaved in a similar way to a flatplate when at low wind speeds, and the profiles of wind speedcould be shown to be equivalent to those expected from laminarboundary layer theory. Nevertheless, the boundary layer becameturbulent at Reynolds numbers much lower than those requiredto cause the transition to turbulence in a flat plate. Turbulentair flow in the wind tunnel greatly increased boundary layerturbulence but had only a small effect on evaporation from amodel of the leaf. The evaporation rates observed were 2.5 timeshigher than expected from theory, irrespective of the turbulenceregime.  相似文献   

11.
For olfaction to occur, signal molecules must move through the environment from the source to the receptor cells. As molecules approach receptor structures they pass through a boundary layer surrounding those receptor structures. Within boundary layers the interaction between the forces causing chemical dispersion changes. To investigate how the boundary layer changes the dynamics of the chemical signals, we measured chemical dynamics within the boundary layer around the moth antennae using microelectrodes. The results showed that the boundary layer amplified three aspects of the chemical signal: peak height, peak onset, and decay time. Spectral analysis of turbulent signals showed that the temporal aspects of the chemical signal were altered. The boundary layers around the male and female antennae have different effects on the spectrum of chemical temporal fluctuations. Specifically, at a flow speed of 0.12 m s−1, the analysis showed distinct amplification patterns for each sex. Thus, the fluid flow around the antennae functions as a filter, altering the structure of the chemical signal that is arriving at the receptors. The results illustrated in this study show that male and female moths have different physical filters that can alter the information that can be extracted from odor plumes. Accepted: 1 September 1997  相似文献   

12.
Microhabitats occupied by larvae of 12 species or complexes of black flies at 30 sites in western Canada were investigated for fluid flow parameters. An attached boundary layer was a feature of almost all microhabitats occupied by larvae of black flies. Although not measured directly, acceleration of water resulting from flow around an object appeared to alter flow characteristics and make microhabitats more favourable. This predictability in the flow characteristics of microhabitats occupied by larvae of black flies implies that the contagious dispersion of these larvae is a response to the heterogeneity of flow over a stream bed. It is suggested that microhabitats characterized by suitable flow characteristics may constitute a resource that limits population size. Larvae occupied microhabitats with both laminar and turbulent boundary layers, and were found in microhabitats with a wide range of water velocities. Mainstream flow parameters investigated were; water velocity, water depth, and whether flow was subcritical, critical or supercritical. Boundary layer parameters investigated were; whether flow was laminar or turbulent, and the point at which separation from the substratum occurred.  相似文献   

13.
Accurate estimates of drag on marine animals are required to investigate the locomotive cost, propulsive efficiency, and the impacts of entanglement if the animal is carrying fishing gear. In this study, we performed computational fluid dynamics analysis of a 10 m (length over all) right whale to obtain baseline measurements of drag on the animal. Swimming speeds covering known right whale speed range (0.125 m/s to 8 m/s) were tested. We found a weak dependence between drag coefficient and Reynolds number. At a swimming speed of 2 m/s, we analyzed the boundary layer thicknesses, the flow regimes, and drag components. We found the thickest boundary layer at the lateral sides of the peduncle, whereas the boundary layer thickness over the outer part of the flukes was less than 1.7 cm. Laminar flow occurred over the anterior ~0.6 LoA and turbulent flow from ~0.8 LoA to the fluke notch. On the surfaces of the flukes outside of the body wake region, flow was laminar. Our most significant finding is that the drag coefficient (0.0071–0.0059) of a right whale for swimming speeds ranging from 0.25 m/s to 2 m/s is approximately twice that of many previous estimates for cetaceans.  相似文献   

14.
The purpose of this investigation was to study the effect of the presence of red blood cells (RBCs) in the plasma layer near the arteriole wall on nitric oxide (NO) and oxygen (O2) transport. To this end, we extended a coupled NO and O2 diffusion-reaction model in the arteriole, developed by our group, to include the effect of the presence of RBCs in the plasma layer and the effect of convection. Two blood flow velocity profiles (plug and parabolic) were tested. The average hematocrit in the bloodstream was assumed to be constant in the central core and decreasing to zero in the boundary layer next to the endothelial surface layer. The effect of the presence or absence of RBCs near the endothelium was studied while varying the endothelial surface layer and boundary layer thickness. With RBCs present in the boundary layer, the model predicts that 1) NO decreases significantly in the endothelium and vascular wall; 2) there is a very small increase in endothelial and vascular wall Po2; 3) scavenging of NO by hemoglobin decreases with increasing thickness of the boundary layer; 4) the shape of the velocity profile influences both NO and Po2 gradients in the bloodstream; and 5) the presence of RBCs in the boundary layer near the endothelium has a much larger effect on NO than on O2 transport.  相似文献   

15.
A great diversity of aquatic animals detects water flow with ciliated mechanoreceptors on the body's surface. In order to understand how these receptors mechanically filter signals, we developed a theoretical model of the superficial neuromast in the fish lateral line system. The cupula of the neuromast was modeled as a cylindrical beam that deflects in response to an oscillating flow field. Its accuracy was verified by comparison with prior measurements of cupular deflection in larval zebrafish (Danio rerio). The model predicts that the boundary layer of flow over the body attenuates low-frequency stimuli. The fluid-structure interaction between this flow and the cupula attenuates high-frequency stimuli. The number and height of hair cell kinocilia and the dimensions of the cupular matrix determine the range of intermediate frequencies to which a neuromast is sensitive. By articulating the individual mechanical contributions of the boundary layer and the components of cupular morphology, this model provides the theoretical framework for understanding how a hydrodynamic receptor filters flow signals.  相似文献   

16.
The influence of biofilms on skin friction drag   总被引:1,自引:0,他引:1  
Schultz MP  Swain GW 《Biofouling》2000,15(1-3):129-139
The contribution of biofilms to skin friction drag is not clearly defined, and as regulations continue to restrict the use of biocides in antifouling paints, they are likely to form a greater presence on ship hulls. This paper reviews the flow regime around a ship's hull, the basics of boundary layer structure, and the effects of rigid surface roughness on drag. A review of experimental studies of biofilms in turbulent shear flows at laboratory and ship-scale is made. The consensus of these studies shows that biofilms increase skin friction drag. Some measurements carried out in turbulent boundary layer flow using a two-component, laser Doppler velocimeter (LDV) are also presented. These results indicate an increase in skin friction for biofilms that is dependent on composition as well as thickness.  相似文献   

17.
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.  相似文献   

18.
Abstract. A new method is described for determining the boundary layer resistance over wet filter paper exposed within a leaf cuvette, based on the energy balance of the filler paper. The boundary layer resistance is calculated by an iterative procedure from measurements of the relative humidity and temperature of the air in the cuvette. Comparisons between the new and the conventional method, involving measurement of the filter paper temperature, show close agreement.
To simplify the method further, a graph has been constructed for the relationship between boundary layer resistance and cuvette relative humidity at temperatures from 15 to 35°C, determined at one value of the ratio of the flow rate through the cuvette to the filter paper area.
An analysis of errors suggests that the new method is less sensitive than the conventional to errors in temperature and humidity.  相似文献   

19.
A numerical study on impact of crop canopy on mesoscale climate   总被引:2,自引:0,他引:2  
The impact of well watered mesoscale wheat planted on the mesoscale boundary layer structures of midlatitude arid area has been investigated by using a mesoscale biophysical meteorological model. The investigation indicates that mesoscale perturbations in temperature and specific humidity over crop area from the adjacent dry, bare soil, caused by the transpiration from the crop canopy and evaporation from underlying humid soil, result in a horizontal pressure gradient. A mesoscale circulation is forced by the pressure perturbation with a wind speed of about 5 m/s directing from the crop canopy to the bare soil in the lower boundary layer. In the daytime, the boundary layer structure over a complex terrain is determined by the interactions between upslope flow circulations and the circulations mentioned above when wheat crop canopies are located on plain and plateau. The impact of crop canopy scale on this thermally forced mesoscale circulation is also investigated.  相似文献   

20.
Buoyancy effect on forced convection in the leaf boundary layer   总被引:1,自引:0,他引:1  
Abstract. Mixed convection (forced convection plus free convection) in the leaf boundary layer was examined by air flow visualization and by evaluation of the boundary layer conductance at different leaf-air temperature differences ( T L- T A) under low wind velocities. The visualized air flow was found to become more unstable and buoyant at higher T L- T A. An ascending longitudinal plume was induced along the upper surface, and the air flow along the lower surface ascended after passing the trailing leaf edge. The air flow modified by buoyancy was considered to result in an increase in boundary layer conductance ( G A) for mixed convection, which became higher with higher T L- T A as compared with the conductance for pure forced convection without buoyancy. This increase in G A appeared larger at larger Grashof number (Gr) and at smaller Reynolds number (Re). The dependences of buoyancy effect on Gr and Re were related to 'edge-effects'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号