首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The linear electrode array: a useful tool with many applications.   总被引:4,自引:0,他引:4  
In this review we describe the basic principles of operation of linear electrode arrays for the detection of surface EMG signals, together with their most relevant current applications. A linear array of electrodes is a system which detects surface EMG signals in a number of points located along a line. A spatial filter is usually placed in each point for signal detection, so that the recording of EMG signals with linear arrays corresponds to the sampling in one spatial direction of a spatially filtered version of the potential distribution over the skin. Linear arrays provide indications on motor unit (MU) anatomical properties, such as the locations of the innervation zones and tendons, and the fiber length. Such systems allow the investigation of the properties of the volume conductor and its effect on surface detected signals. Moreover, linear arrays allow to estimate muscle fiber conduction velocity with a very low standard deviation of estimation (of the order of 0.1-0.2 m/s), thus providing reliable indications on muscle fiber membrane properties and their changes in time (for example with fatigue or during treatment). Conduction velocity can be estimated from a signal epoch (global estimate) or at the single MU level. In the latter case, MU action potentials are identified from the interference EMG signals and conduction velocity is estimated for each detected potential. In this way it is possible, in certain conditions, to investigate single MU control and conduction properties with a completely non-invasive approach. Linear arrays provide valuable information on the neuromuscular system properties and appear to be promising tools for applied studies and clinical research.  相似文献   

2.
Changes in muscle fibre length and surface electrode position with respect to the muscle fibres affect the amplitude and frequency characteristics of surface electromyography (SEMG) in different ways. Knowledge of changes in muscle fibre length would help towards a better interpretation of the signals. The possibility of estimating the length through SEMG during voluntary contractions was checked in this study. The fibres' semi-length was estimated from the product of the conduction velocity and conduction time during which the wave of excitation propagated from the end-plate region to the ends of the fibres. Short (10 s), moderate (30% of maximum voluntary contraction) isometric contractions were performed by 10 subjects at different elbow joint angles (80-140 degrees in steps of 20 degrees ). Monopolar signals were detected non-invasively, using a two-dimensional electrode array. High spatial resolution EMG and a decomposition technique were utilised to extract single motor unit activities for triggered averaging and to estimate conduction velocity. A significant increase with joint angle was found in conduction time and estimated fibre semi-length. Changes in conduction velocity with joint angle were found to be not significant. The methodology described allows the relative changes in fibres' semi-length to be estimated from SEMG data.  相似文献   

3.
This paper contributes to clarifying the conditions under which electrode position for surface EMG detection is critical and leads to estimates of EMG variables that are different from those obtained in other nearby locations. Whereas a number of previous works outline the need to avoid the innervation zone (or the muscle belly), many authors place electrodes in the central part or bulge of the muscle of interest where the innervation zone is likely to be. Computer simulations are presented to explain the effect of the innervation zone on amplitude, frequency and conduction velocity estimates from the signal and the need to avoid placing electrodes near it. Experimental signals recorded from some superficial muscles of the limbs and trunk (abductor pollicis brevis, flexor pollicis brevis, biceps, upper trapezius, vastus medialis, vastus lateralis) were processed providing support for the findings obtained from simulations. The use of multichannel techniques is recommended to estimate the location of the innervation zone and to properly choose the optimal position of the detection point(s) allowing meaningful estimates of EMG variables during movement analysis.  相似文献   

4.
The different techniques to measure and analyze surface EMG are summarized with an emphasis on the clinician's point of view. The application of surface EMG in neurological disease is hampered by many inherent problems, especially the difficulties in extracting features of single motor units. However, the evolution of surface EMG from single bipolar recordings via a linear array of multiple electrodes to densely packed, multi-channel electrode arrays could in principle solve this problem. The added value of using multiple channels (up to 128) with an interelectrode distance of a few millimetres to obtain more spatial information is emphasized. At least for some muscles it is now possible to extract information from the surface EMG, conventionally thought to belong to the domain of needle EMG (for example the "electrical size" of motor units). The use of analysis techniques such as the estimation of muscle fiber conduction velocity has already proven to be of diagnostic value in several myopathies characterized by a disturbed membrane function and in metabolic myopathies with abnormal fatigue profiles. Future research should be directed at the development of analysis techniques enabling the extraction of more relevant motor unit variables from surface EMG signals.  相似文献   

5.
The purpose of this study was to evaluate the neuromuscular adaptation that occurred with aging, by comparing young and aged subjects with respect to changes in surface EMG from the tibialis anterior muscle during fatiguing contractions. EMG variables such as the averaged rectified value (ARV), median frequency (MDF), and muscle fiber conduction velocity (MFCV) were calculated during maximal (MVC, 3 sec) and submaximal (60% MVC, 60 sec) isometric contractions. Muscular force, ARV, MDF, and MFCV during MVC were significantly greater in the young than in the elderly (p < 0.05). EMG amplitude increased and the waveform slowed in all subjects during submaximal contractions, indicating the development of local muscle fatigue. As fatigue progressed, the ARV increased and the MDF and MFCV decreased significantly (p < 0.01). The fatigue-induced changes in the MDF and MFCV were significantly smaller in aged than in young subjects (p < 0.05), a trend also seen in the ARV change, which means that the elderly cannot be fatigued as much as the young with contractions of the same relative intensity. These results as a whole suggest that the aged subjects hold an adaptive motor strategy to cope with age-related neuromuscular deteriorations, due to the decline of motor unit activation and selective atrophy of fast twitch muscle fibers.  相似文献   

6.
This paper provides an overview of techniques suitable for the estimation, interpretation and understanding of time variations that affect the surface electromyographic (EMG) signal during sustained voluntary or electrically elicited contractions. These variations concern amplitude variables, spectral variables and muscle fiber conduction velocity, are interdependent and are referred to as the ‘fatigue plot'. The fatigue plot provides information suitable for the classification of muscle behavior. In addition, the information obtainable by means of linear electrode arrays is discussed, and applications of mathematical models for the interpretation of array signals are presented. The model approach provides additional ways for the classification of muscle behavior.  相似文献   

7.
Fibre conduction velocity and fibre composition in human vastus lateralis   总被引:6,自引:0,他引:6  
The relationship between muscle fibre composition and fibre conduction velocity was investigated in 19 male track athletes, 12 sprinters and 7 distance runners, aged 20-24 years, using needle biopsy samples from vastus lateralis. Cross sectional areas of the fast twitch (FT) and slow twitch (ST) fibres were determined by histochemical analysis. The percentage of FT fibre areas ranged from 22.6 to 93.6%. Sprinters had a higher percentage of FT fibres than distance runners. Muscle fibre conduction velocity was measured with a surface electrode array placed along the muscle fibres, and calculated from the time delay between 2 myoelectric signals recorded during a maximal voluntary contraction. The conduction velocity ranged from 4.13 to 5.20 m.s-1. A linear correlation between conduction velocity and the relative area of FT fibres was statistically significant (r = 0.84, p less than 0.01). This correlation indicates that muscle fibre composition can be estimated from muscle fibre conduction velocity measured noninvasively with surface electrodes.  相似文献   

8.
The feasibility of action potential velocity (APV) measurements in the upper trapezius muscle with surface electrodes has been investigated. A four-bar electrode array connected to a double differential amplifier system was used. APV was estimated by a polarity correlation algorithm implemented on a PC computer. Six females and six males participated in the investigation. Attempts to get acceptable APV estimates were made in five electrode locations, 5 mm interspaced along the upper rim, beginning in the most distal part. Data were collected while holding out the arm horizontally in the sagittal plane. The results indicate that the method worked in five out of six males while it was difficult to get reliable estimates in the female group. Furthermore, the two most distal electrode locations gave the best results. In these two locations, the average APV for males was 4.8 m s−1, 0.9. The difficulties in the female group were possibly due to small muscle dimensions and subcutaneous fat. Use of the double differential technique seems to be essential; attempts with the single differential technique were fruitless.  相似文献   

9.
The aim of the study was to investigate the correlation between myosin heavy chain (MHC) composition, lactate threshold (LT), maximal oxygen uptake VO2max, and average muscle fiber conduction velocity (MFCV) measured from surface electromyographic (EMG) signals during cycling exercise. Ten healthy male subjects participated in the study. MHC isoforms were identified from a sample of the vastus lateralis muscle and characterized as type I, IIA, and IIX. At least three days after a measure of LT and VO2max, the subjects performed a 2-min cycling exercise at 90 revolutions per minute and power output corresponding to LT, during which surface EMG signals were recorded from the vastus lateralis muscle with an adhesive electrode array. MFCV and instantaneous mean power spectral frequency of the surface EMG were estimated at the maximal instantaneous knee angular speed. Output power corresponding to LT and VO2max were correlated with percentage of MHC I (R2=0.77; and 0.42, respectively; P<0.05). MFCV was positively correlated with percentage of MHC I, power corresponding to LT and to VO2max (R2=0.84; 0.74; 0.53, respectively; P<0.05). Instantaneous mean power spectral frequency was not correlated with any of these variables or with MFCV, thus questioning the use of surface EMG spectral analysis for indirect estimation of MFCV in dynamic contractions.  相似文献   

10.
The purpose of the present investigation is to use surface interference EMG recorded by branched electrodes for assessment of muscle fatigue during sustained voluntary isometric contractions at different levels. Level-trigger averaging and turn/amplitude analysis have been applied. The conduction velocity (CV) of excitation was calculated from the time shift of the negative peaks of the averaged potentials (AvPs) derived from the EMG recorded by two electrodes placed along the muscle fibers. The recruitment of new motor units affects the negative amplitude (NA) of AvPs, the number of turns per second and the mean amplitude of turns in a different way depending on the level of sustained contractions. In contrast, the CV declined at all levels of sustained contractions and was the most appropriate parameter for the muscle fatigue assessment. There was a good correlation between CV decrease and torque reduction during sustained maximal efforts. The level-trigger averaging technique of the interference EMG recorded by surface branched electrodes is easy and non-invasive, thus being very convenient for routine application.  相似文献   

11.
This work investigated motor unit (MU) recruitment during transcutaneous electrical stimulation (TES) of the tibialis anterior (TA) muscle, using experimental and simulated data. Surface electromyogram (EMG) and torque were measured during electrically-elicited contractions at different current intensities, on eight healthy subjects.EMG detected during stimulation (M-wave) was simulated selecting the elicited MUs on the basis of: (a) the simulated current density distribution in the territory of each MU and (b) the excitation threshold characteristic of the MU. Exerted force was simulated by adding the contribution of each of the elicited MUs. The effects of different fat layer thickness (between 2 and 8 mm), different distributions of excitation thresholds (random excitation threshold, higher threshold for larger MUs or smaller MUs), and different MU distributions within the muscle (random distribution, larger MU deeper in the muscle, smaller MU deeper) on EMG variables and torque were tested.Increase of the current intensity led to a first rapid increase of experimental M-wave amplitude, followed by a plateau. Further increases of the stimulation current determined an increase of the exerted force, without relevant changes of the M-wave. Similar results were obtained in simulations.Rate of change of conduction velocity (CV) and leading coefficient of the second order polynomial interpolating the force vs. stimulation level curve were estimated as a function of increasing current amplitudes. Experimental data showed an increase of estimated CV with increasing levels of the stimulation current (for all subjects) and a positive leading coefficient of force vs. stimulation current curve (for five of eight subjects). Simulations matched the experimental results only when larger MUs were preferably located deeper in the TA muscle (in line with a histochemical study). Marginal effect of MU excitation thresholds was observed, suggesting that MUs closer to the stimulation electrode are recruited first during TES regardless of their excitability.  相似文献   

12.
Noninvasive estimation of motor unit propagation velocity (MUPV) was reduced to that of the time delay between signals detected by two surface EMG electrodes placed along the muscle fibres. When the cross-correlation function between the signals was used, the problem with temporal resolution arose. Estimation of the time delay in the frequency domain was proposed to overcome this problem. To check whether the cross-correlation and phase-difference methods give the same estimates, the results obtained by both methods were compared through simulation. A different sensitivity of the two methods to the effects of the excitation origin and extinction was found. Besides, the quality of the estimate depended on the electrode arrangement. The longitudinal double difference electrodes were preferable with the phase-difference method, while the MUPV estimates obtained by the cross-correlation technique were more correct when the longitudinal single difference or bipolar transversal double difference electrodes were used. In addition, the estimates obtained by the phase-difference method were more sensitive to the longitudinal scattering of motor end-plates and ends of the fibres, to the fibre lengths and to the negative after-potential magnitude. Such sensitivity could make MUPV estimates incorrect even under a relatively small distance between the motor unit axis and electrode.  相似文献   

13.
The relationship between surface myoelectric signal parameters and the level of voluntary or electrically elicited contractions was studied in 32 experiments on the tibialis anterior muscle of 22 healthy human subjects. Contractions were performed at 20 and 80% of the maximum voluntary contraction torque. Two levels of stimulation current were used, yielding, respectively, a maximum M wave and an M wave approximately 30% of the maximum. A four-bar electrode probe was used to detect single- and double-differential signals from which mean and median frequency of the power spectrum and average muscle fiber conduction velocity were estimated. Measurements obtained from voluntary contractions showed a positive correlation between contraction levels and both conduction velocity and spectral parameters. Conduction velocity increased by 21.2 +/- 10.9% when voluntary contraction level increased from 20 to 80% of the maximal value. Spectral parameters increased by similar amounts. Tetanic electrical stimulation was applied to a muscle motor point for 20 s via surface electrodes. Rectangular current pulses with 0.1-ms width and frequencies of 20, 25, 30, 35, and 40 Hz were used. Four types of behavior were observed with increasing stimulation level: 1) the two spectral parameters and conduction velocity both increased with stimulation in 15 experiments, 2) the two spectral parameters decreased and conduction velocity increased in 8 experiments, 3) the two spectral parameters and conduction velocity both decreased in 6 experiments, and 4) the two spectral parameters increased and conduction velocity decreased in 3 experiments. Conduction velocity increased with increasing stimulation current in 72% of the experiments, indicating a recruitment order similar to that of voluntary contractions, although it decreased in the other 28% of the cases, indicating a reverse order of recruitment. Contrary to what is observed in direct stimulation of nerves, motor units are not in general recruited in reverse order of size during electrical stimulation of a muscle motor point. This discrepancy may be the result of geometric factors or a lack of correlation between axonal branch diameter and the diameter of the parent motoneuron axon. Changes of conduction velocity and spectral parameters in opposite directions may be the result of the combined effect of the motor unit recruitment order and of the different tissue filtering function associated with the geometric location of the recruited motor units within the muscle.  相似文献   

14.
The aims of this study are (1) to demonstrate that multi-channel surface electromyographic (EMG) signals can be detected with negligible artifacts during fast dynamic movements with an adhesive two-dimensional (2D) grid of 64 electrodes and (2) to propose a new method for the estimation of muscle fiber conduction velocity from short epochs of 2D EMG recordings during dynamic tasks. Surface EMG signals were collected from the biceps brachii muscle of four subjects with a grid of 13 × 5 electrodes during horizontal elbow flexion/extension movements (range 120–170°) at the maximum speed, repeated cyclically for 2 min. Action potentials propagating between the innervation zone and tendon regions could be detected during the dynamic task. A maximum likelihood method for conduction velocity estimation from the 2D grid using short time intervals was developed and applied to the experimental signals. The accuracy of conduction velocity estimation, assessed from the standard deviation of the residual of the regression line with respect to time, decreased from (range) 0.20–0.33 m/s using one column to 0.02–0.15 m/s when combining five columns of the electrode grid. This novel method for estimation of muscle fiber conduction velocity from 2D EMG recordings provides an estimate which is global in space and local in time, thus representative of the entire muscle yet able to track fast changes over the execution of a task, as is required for assessing muscle properties during fast movements.  相似文献   

15.
This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the global level of amplitude and spectral analysis cannot be used to characterize fatigue properties of low back muscles during very low level, long duration contractions since in these cases the non-stable MU pool has a major influence on the EMG variables. These considerations clarify issues only partially investigated in past studies. The limitations indicated above are important and should be carefully discussed when presenting surface EMG results as a means for low back muscle assessment in clinical practice.  相似文献   

16.
The purpose of this study was to assess different measurement strategies to increase the reliability of different electromyographic (EMG) indices developed for the assessment of back muscle impairments. Forty male volunteers (20 controls and 20 chronic low back pain patients) were assessed on three sessions at least 2 days apart within 2 weeks. Surface EMG signals were recorded from four pairs (bilaterally) of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10) while the subjects performed, in a static dynamometer, two static trunk extension tasks at 75% of the maximal voluntary contraction separated by a 60 s rest period: (1) a 30 s fatigue task and (2) a 5 s recovery task. Different EMG indices (based on individual muscles or averaged across bilateral homologous muscles or across all muscles) were computed to evaluate muscular fatigue and recovery. Intra-class correlation coefficient (ICC) and standard error of measurement (SEM) in percentage of the grand mean were calculated for each EMG variable. Reliable EMG indices are achieved for both healthy and chronic low back pain subjects when (1) electrodes are positioned on medial back muscles (multifidus at the L5 level and longissimus at L1) and (2) measures are averaged across bilateral muscles and/or across two fatigue tests performed within a session. The most reliable EMG indices were the bilateral average of medial back muscles (ICC range: 0.68-0.91; SEM range: 5-35%) and the average of all back muscles (ICC range: 0.77-0.91; SEM range: 5-30%). The averaging of measures across two fatigue tests is predicted to increase the reliability by about 13%. With regards to EMG indices of fatigue, the identification of the most fatigable muscle also lead to satisfactory results (ICC range: 0.74-0.79; SEM range: 21-26%). The assessment of back muscle impairments through EMG analysis necessitates the use of multiple electrodes to achieve reliable results.  相似文献   

17.
Space permanence simulations such as prolonged bed-rest can mimic some of the physiological modifications in the human body and provide study conditions that are more accessible than during space flight. A short term bed-rest experiment was organized to simulate the effects of weightlessness for studying the adaptation to this condition. Eight healthy young volunteers were studied before and immediately after the 14 day periods of strict bed-rest.Surface EMG signals were detected with linear electrode arrays from vastus medialis, vastus lateralis and tibialis anterior muscle during isometric voluntary contractions at 20% MVC. Motor unit action potentials (MUAPs) of individual motor units were extracted from the interference EMG signals with a partial decomposition algorithm and averaged.MUAP templates generated by the same motor unit could be retrieved before and after bed-rest period. Muscle fiber conduction velocity (CV) was estimated from each averaged MUAP template and from the global EMG signal. Both global and single MU conduction velocity was observed to decrease by about 10% after the bed-rest period (p < 0.05). Amplitude and power spectral parameters did not significantly change after the bed-rest period.It is concluded that a short term bed-rest reduces the CV of individual motor units without a significant effect on muscle force or on other electrophysiological parameters.  相似文献   

18.
The effect of surface electrode location on the estimates of the median frequency and conduction velocity of the myoelectric signal was investigated. The locations were identified with respect to the innervation zone and the tendonous portion of the tibialis anterior muscle. Considerable modifications in the median frequency and conduction velocity parameters were noted. The highest values of the median frequency occurred at the region of the innervation zone and tendonous insertion of the muscle, and decreased proportionally with distance from these areas. The rate of change of median frequency was not effected by electrode location. Estimates of conduction velocity were most stable in a region between the distal tendon and the adjacent innervation zone. This region also provided the best linear fit when comparing conduction velocity to median frequency estimates. The implications for signal detection procedures are discussed.  相似文献   

19.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

20.
From cell to movement: to what answers does EMG really contribute?   总被引:4,自引:0,他引:4  
This paper aims to address some of the possibilities and limitations of EMG technologies available to date. Considerable progress has been achieved in this field during the last 30 years and EMG signals can be easily obtained on different levels beginning at the cell membrane and ending with the global EMG associated with the movement itself. Different aspects from cell to movement have been considered in this paper. Highly selective needle EMG for the detection of the processes at the membrane is discussed as well as high spatial resolution EMG which gives non-invasive access to the acquisition of the single motor unit activity. On the highest level of muscles, an expert system is introduced as a novel approach to support the interpretation of muscular co-ordination as detected by conventional surface EMG. While there is a high potential in the newly developed EMG methodologies, it is a big challenge to utilize these methodologies in order to obtain detailed, repeatable, reliable--and meaningful--results. However, the risk of over- and misinterpretation has to be carefully considered. In this paper, this risk is exemplified in situations dealing with muscle fatigue, conduction velocity and cross-talk. Despite all the new possibilities available, the authors recommend that EMG with its inherent strengths and limitations should still be diligently, but carefully, used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号