首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two kinds of cysteine proteinase inhibitor (Mr 145 000 and Mr 15 500) were purified from bovine serum. These purified inhibitors showed a single band on SDS-polyacrylamide gel electrophoresis, respectively. The isoelectric point of the high molecular weight inhibitor was found to be 4.4 and that of the low molecular weight inhibitor was 8.6. The high molecular weight inhibitor inhibited papain and cathepsin H, but had little activity against cathepsin B. While the low molecular weight inhibitor was a strong inhibitor of papain and cathepsin H and showed a weak inhibition of cathepsin B. These two inhibitors showed different immunological reactivities.  相似文献   

2.
Koehler SM  Ho TH 《Plant physiology》1990,94(1):251-258
We previously described the purification and characterization of a 37,000 Mr cysteine proteinase, designated EP-A, from gibberellic acid (GA3)-induced barley (Hordeum vulgare L.) aleurone layers (S Koehler, T-HD Ho [1988] Plant Physiol 87: 95-103). A second, more abundant protease has now been purified from this tissue. This protease, designated EP-B, has an apparent Mr of 30,000 on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). It resolves into two bands during native isoelectric focusing with pl of 4.6 to 4.7. The analysis of hemoglobin digestion products by both gradient SDS-PAGE and Bio-Gel P2 chromatography, the inhibition of protease activity by E-64, leupeptin, iodoacetate, and p-hydroxymercuribenzoate, and N-terminal amino acid sequence analysis all indicate that EP-B is a cysteine proteinase. The first 22 amino acids at the N terminus of EP-B have been determined, and their sequence is 90% similar to that of EP-A. EP-B has properties similar to EP-A; however, EP-B is much more sensitive to high pH during gel electrophoresis and therefore is not detectable on native activity gels used to detect EP-A. Its pH optimum against azocasein and hemoglobin is 4.5 to 4.6. Both of these proteinases digest hordeins enriched for the B and D fractions into similar peptides of 25,000 to 2,000 Mr as determined by gradient SDS-PAGE.  相似文献   

3.
Eight and five proteinase inhibitors were purified from Erythrina corallodendron and E. cristagalli seeds, respectively, by gel filtration followed by ion exchange chromatography on DEAE-cellulose and DEAE-sepharose. Each inhibitor consists of 161–163 amino acids (Mr 18 000) including four half-cystine residues and resembles the Kunitz-type proteinase inhibitors. The N-terminal amino acid sequence of trypsin inhibitor DE-7 from E. corallodendron seed resembles those of other Erythrina species. For the other inhibitors no free N-terminal amino acid was found. DE-1,-2,-3,-4 and -5 from the seed of E. corallodendron contain potent inhibitors for α-chymotrypsin and they have practically no action on trypsin. From the same seed, inhibitors DE-6, -7 and -8 strongly inhibit trypsin and also inhibit α-chymotrypsin to varying degrees. From the seeds of E. cristagalli, inhibitors DE-1 and -8 inhibit trypsin strongly and DE-2, -3 and -4 are strongly inhibitory for α-chymotrypsin. On summarizing the inhibitor characteristics of the Kunitz-type proteinase inhibitors from the seeds of eight different species of Erythrina, it was obvious that there is a relationship between the alanine content of the inhibitors and their activities. A high alanine content is associated with potent α-chymotrypsin activities and low alanine content with strong trypsin activities.  相似文献   

4.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sexphadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80°C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1–1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling ‘in vivo’ cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

5.
The latent cysteine proteinase present in ascitic fluid of patients with neoplasia and released from ascites cells in culture has been partially purified and the enzyme after pepsin activation was shown to be immunologically related to the lysosomal proteinase, cathepsin B. The latent form was characterized as a single chain of Mr 40 000 as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions followed by Western blotting and immune staining with an antiserum to human cathepsin B. Using the same techniques the enzyme after pepsin activation gave a single band of Mr 33 000. Analysis by isoelectric focusing showed that the latent enzyme before and after pepsin treatment is composed of several acidic isoenzymes. These findings suggest that this latent proteinase represents a precursor form of cathepsin B which is released extracellularly rather than being processed and directed to the lysosome.  相似文献   

6.
Designing cysteine proteinase inhibitors as antitrichomonal drugs requires knowledge of which cysteine proteinases are essential to the parasite. In an attempt to obtain such information, the effects of a number of cysteine proteinase inhibitors on trichomonad growth in vitro and proteinase activity were investigated. The broad specificity inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane (known as E-64) had little effect on growth of Trichomonas vaginalis (27% inhibition at 280 μM, none at 28 μM) even though the addition of 2.8 μM E-64 to growth medium resulted in inhibition of all but two (apparent molecular masses: 35 k and 49 k) of the parasite's proteinases detected by gelatin SDS-PAGE. This shows that many of the parasite's cysteine proteinases are not essential for growth in axenic culture. In contrast, a peptidyl acyloxymethyl ketone, N-benzoyloxycarbonyl-Phe-Ala-CH2OCO-(2,6,-(CF3)2)Ph, at 16 μM killed T. vaginalis and severely inhibited growth of Tritrichomonas foetus. Exposure of Trichomonas vaginalis to 16 μM of this compound for 1 h resulted in both the 35 kDa and 49 kDa proteinases being inhibited, whereas some other proteinases were unaffected. Similar distinctions between the inhibitor sensitivity of the parasite's cysteine proteinases were apparent when a biotinylated peptidyl diazomethyl ketone was used to detect active proteinases. These data suggest that the growth inhibitory effects of the peptidyl acyloxymethyl ketone are through inhibition of cysteine proteinases that are not affected when the parasites are grown in the presence of E-64. At least one of these enzymes, which include the 35 kDa and 49 kDa cysteine proteinases, must be essential and so a suitable target for chemotherapeutic attack.  相似文献   

7.
Koehler S  Ho TH 《Plant physiology》1988,87(1):95-103
Using in series ammonium sulfate precipitation, gel filtration, and DEAE anion exchange high performance liquid chromatography, we have purified to homogeneity a protease of Mr 37,000 secreted from barley (Hordeum vulgare L. cv Himalaya) embryoless half-seeds. This protease exists in three isozymic forms whose synthesis and secretion from barley aleurone layers was shown to be a gibberellic acid (GA3)-dependent process (R Hammerton, T-HD Ho 1986 Plant Physiol 80: 692-697). This protease constitutes a major portion of the protease activity secreted from half-seeds between 72 to 96 hours of incubation in the presence of GA3 as detected on activity gels containing hemoglobin as the substrate. Analysis of digestion products by urea/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that this protease is an endoprotease, therefore it is designated as barley endoprotease-A (EP-A). Inhibitor studies demonstrated that EP-A belongs to the cysteine class of endoproteases. The optimum pH for EP-A activity was 5.0, and the temperature optimum was 45°C. Comparison of cyanogen bromide generated peptide fragments and NH2-terminal sequence analyses of the three individual EP-A isozymes demonstrates that they are very similar to each other. The NH2-terminal sequence shows extensive sequence homology to the NH2-terminal sequence of papain and several other cysteine proteinases. We also provide evidence that EP-A is not `aleurain,' a putative cysteine proteinase encoded by a GA3-induced barley cDNA clone (JC Rogers, D Dean, GR Heck 1985 Proc Natl Acad Sci USA 82:6512-6516).  相似文献   

8.
Azocasein-degrading proteinase activity was detected in all rumen ciliate protozoa that were examined from four entodiniomorphid and two holotrich genera. All of the activities were optimal in the range pH 4.0-5.0 and were inhibited by cysteine proteinase inhibitors, notably leupeptin. The inhibition profiles and extent of inhibition observed with the different groups of inhibitors were organism-specific. Gelatin-SDS-polyacrylamide gel electrophoresis of protozoal lysates revealed multiple forms of the proteinases in the species examined. The number of enzymes detected, their molecular masses, the level of activity and inhibitor susceptibility was genus-dependent. The proteinase profiles of the two holotrich species differed and inter-species differences were also apparent among species of the genus Entodinium. The characteristics and molecular size distribution of rumen bacterial proteinases were different to the protozoal proteinases. Low levels of proteinase activity, of apparently bacterial origin, were detected by gelatin-SDS-PAGE analysis of cell-free rumen liquor.  相似文献   

9.
A fibrinogenolytic proteinase from the venom of Naja nigricollis was purified by chromatography on Bio-Rex 70 and Phenyl-Sepharose. The purified enzyme, designated proteinase F1, was homogeneous by the criterion of SDS-polyacrylamide gel electrophoresis, and consisted of a single chain with a molecular weight of 58 000. Purified proteinase F1 had approximately 15-fold more proteinase activity than the crude venom, based on its ability to inactive α2-macroglobulin. The enzyme acted on only the Aα-chain of fibrinogen and left the Bβ- and γ-chains intact. The pH optimum for this fibrinogenolytic activity was in the range of pH 8 to 10. In addition to its activity on fibrinogen, proteinase F1 was active on α2-macroglobulin and fibronectin, but did not degrade casein, hemoglobin or bovine serum albumin. The enzyme was not inhibited by inhibitors of serine proteinases, cysteine proteinases or acid proteinases, but only by the metalloproteinase inhibitor, EDTA. The inhibition by EDTA could be prevented by Zn2+, but not by Ca2+ or Mg2+.  相似文献   

10.
Seeds of 32 species selected from two of the four major groups of gymnosperms, the ancient Cycadales and the economically important Coniferales, were analysed for inhibitors (I) of the serine proteinases trypsin (T), chymotrypsin (C), subtilisin (S) and elastase (E) using isoelectric focusing (IEF) combined with gelatin replicas. Subtilisin inhibitors were detected in 17 species, being particularly active in the Cycadales. Several species of the genera Cephalotaxus, Pseudotsuga and Cycas contained inhibitors active against elastase while strong CSTIs and CSIs were also present in Cycas pectinata and C. siamensis. No inhibitors were detected in seeds of Chamaecyparis, Thuja, Abies, Larix, Picea and Pinus spp. Serine proteinase inhibitors were purified from seeds of C. siamensis by affinity chromatography using trypsin and chymotrypsin, IEF and SDS-PAGE. Several CSTI components with Mr ranging from 4000 to 18,000 were partially sequenced using Edman degradation and mass spectrometry. Most of the sequences were similar to a hypothetical protein encoded by an mRNA from sporophylls of C. rumphii which in turn was similar to Kunitz-type proteinase inhibitors from flowering plants. Analysis of expressed sequence tag (EST) databases confirmed the presence of mRNAs encoding Kunitz-type inhibitors in the Cycadales and Coniferales and also demonstrated their presence in a third major group of gymnosperms, the Ginkgoales. This is the first report of Kunitz-type serine proteinase inhibitors from plants other than Angiosperms.  相似文献   

11.
《FEBS letters》1986,199(2):139-144
The amino acid sequence of proteinase K (EC 3.4.21.14) from Tritirachium album Limber has been determined by analysis of fragments generated by cleavage with CNBr or BNPS-skatole. The enzyme consists of a single peptide chain containing 277 amino acid residues, corresponding to Mr 28 930. Comparison of the sequence with those of the serine proteinases reveals a high degree of homology (about 35%) to the subtilisin-related enzyme. But in contrast to the subtilisins, proteinase K contains 2 disulfide bonds and a free cysteine residue. This finding may indicate that proteinase K is a member of a new subfamily of the subtilisins.  相似文献   

12.
Two proteolytic enzymes, a cysteine proteinase and a carboxypeptidase, responsible for breakdown of the main storage protein, 13S globulin, were purified from buckwheat seedlings (Fagopyrum esculentum Moench) by (NH4)2SO4 fractionation, gel-filtration on Sephadex G-150, ionexchange chromatography on DEAE-Toyopearl 650 M and chromatofocusing. The cysteine proteinase was purified 74-fold. It has a pH optimum of 5.5, a pI of 4.5 and an apparent molecular mass (Mr) of 71000. The carboxypeptidase was purified 128-fold. It has a pH optimum of 5.3, a pI of 5.8 and a Mr of 78500. Cysteine proteinase hydrolyzed the modified 13S globulin only if the reaction products were eliminated from the incubation mixture by dialysis. Storage protein degradation by the proteinase increased in the presence of carboxypeptidase. We suggest that the two enzymes complete the digestion of 13S globulin after its preliminary hydrolysis by the earlier described enzyme, metalloproteinase, present in dry buckwheat seeds.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - Mr apparent molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

13.
A serum proteinase inhibitor specific for thiol proteinases was prepared in a functionally pure state by Sephadex G-200 gel filtration, starch block electrophoresis and immunoaffinity chromatography. This component was distinct from the known serum proteinase inhibitors. It was demonstrated by immuno-electrophoresis that the incubated mixture of thiol proteinase and this inhibitor produced a soluble complex possessing both antigenicities. The molecular weight of the inhibitor was found to be 90,000 by gel filtration on Sephadex G-150 column, and the electrophoretic mobility was in the α2-region. A tentative term, α2-thiol proteinase inhibitor, was given because of its mobility and inhibition spectrum.  相似文献   

14.
At rat hepatic membrane α1-adrenergic receptors, the nonhydrolyzable GTP analogue p[NH]ppG causes a rightward shift of agonist competition curves and a loss of high-affinity binding. This p[NH]ppG effect is consistent with the involvement of a guanine nucleotide-binding regulatory protein (G-protein) in α1-adrenergic receptor signalling. Although readily apparent in membranes prepared to avoid retention of endogenous nucleotides and activation of Ca2+-sensitive proteinases (+pi), this p[NH]ppG effect is not observed in membranes prepared without proteinase inhibitors (−pi), or in −pi membranes treated with Ca2+ (−pi, +Ca2+). In these various membrane preparations, different Mr forms of the receptor are also identified by photoaffinity labelling with [125I]CP65 526, an aryl azide analog of the α1-selective antagonist, prazosin, followed by SDS-polyacrylamide gel electrophoresis and autoradiography. Whereas a predominant Mr = 80 000 subunit is identified in +pi membranes, in −pi membranes a proteolytic Mr = 59 000 fragment is also observed. In −pi, +Ca2+ membranes, only this latter peptide is detected. To evaluate the ability of each of these forms of the receptor to couple with a G-protein, the effect of p[NH]ppG on the agonist-inhibition of [125I]CP65 526 labelling was determined by laser densitometry scanning and computer analysis. At the Mr = 80 000 subunit, p[NH]ppG causes a rightward shift of agonist competition curves and a loss of high-affinity binding, even in −pi membranes. By contrast, agonist-binding at the Mr = 59 000 subunit is of low-affinity and was not affected by p[NH]ppG. These data indicate that the cleaved Mr = 59 000 fragment, while retaining hormone binding activity is unable to undergo G-protein coupling. Thus, the α1-adrenergic receptor appears to contain a discrete domain necessary for G-protein coupling that is distinct from its ligand recognition site.  相似文献   

15.
Cytosolic and nuclear forms of the glucocorticoid receptor were characterized using immunochemical techniques. Antibodies were raised in rabbits to an Mr 58,000 fragment of the transformed (DNA-binding) glucocorticoid receptor purified from rat liver cytosol by DNA-cellulose chromatography and polyacrylamide gel electrophoresis. Antibodies reacted with the transformed receptor form in a radioimmunoassay for glucocorticoid receptor. Western blot analysis of antibody reactivity revealed a single Mr 185,000 receptor form in rat liver cytosol but a smaller Mr 85,000 form in nucleosol, indicating the Mr 85,000 form is the transformed receptor. Furthermore, western blot analysis indicates that the Mr 185,000 receptor undergoes proteolysis during receptor purification and in vitro transformation processes by generating immunochemically similar proteins of smaller molecular weights. An identical Mr 185,000 glucocorticoid receptor was detected in cytosols of four rat tissues; liver, brain, adrenal medulla, and thymus. The glucocorticoid receptor was localized to the cytoplasm and nucleus of rat adrenal medulla cells by immunohistochemistry, demonstrating the existence in vivo of the transformed receptor and translocation of the receptor from cytoplasm to nucleus.  相似文献   

16.
A highly sensitive gelatin overlay procedure was used to identify inhibitors of serine proteinases and of the cysteine proteinase ficin in seeds and leaves of sunflower. One major and two minor groups of trypsin inhibitors were identified in seeds, the former having a high pI (@10) and also inhibiting chymotrypsin. Three groups of trypsin/subtilisin inhibitors were also present in seeds, together with three inhibitors of ficin. All groups showed polymorphism between lines of Helianthus annuus, while the trypsin and trypsin/subtilisin inhibitors also varied between wild species of Helianthus, with no apparent relationship to growth type (annual or perennial), genome constitution or ploidy level. Genetic analysis showed that the major trypsin inhibitor and three groups of trypsin/subtilisin inhibitors are each controlled by single Mendelian loci, with the three loci for trypsin/subtilisin inhibitors showing recombination values of 0.23–0.40. Purification by RP-HPLC allowed the M r of two trypsin inhibitors to be determined by SDS-PAGE to be about 1,500 and 2,500, while the three trypsin/subtilisin inhibitors varied in M r from about 1,500 to 6,000. Received: 7 March 1999 / Accepted: 18 March 1999  相似文献   

17.
Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.  相似文献   

18.
The serine proteinase inhibitory capacity in the cytosolic fraction of rat skeletal muscle tissue is accounted for by several discrete inhibitory activities. Three of these activities are identical with the proteinase inhibitors α1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor I I respectively, which have been recently characterized as major serine proteinase inhibitors in rat serum (Kuehn, L., Rutschmann, M., Dahlmann, B. and Reinauer, H. (1984) Biochem. J. 218, in the press). The other inhibitor molecule, having an Mr of about 15 000, appears to be an endogeneous inhibitor.  相似文献   

19.
A cysteine endopeptidase (EC 3.4.22.-) present in cotyledons of mung bean (Vigna radiata) seedlings was purified to homogeneity, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This proteinase has an apparent molecular mass of 33 kilodaltons as estimated by SDS-PAGE and belongs to the class of cysteine proteinases as judged by the effects of various proteinase inhibitors on the activity of the enzyme. When proangiotensin is used as a substrate, the enzyme preferentially hydrolyzes the peptide bonds formed by the amino group of Leu or lle in this oligopeptide chain; for the enzyme to cleave those bonds, peptide sequences consisting of at least three amino acid residues on the amino side of Leu or lle must be present. The proteinase readily digests globulin present in mung bean cotyledons to smaller polypeptides.  相似文献   

20.
Disc tissue consisting of pooled annuli fibrosus and nuclei pulposus from the cadaver of an adolescent aged 19 years was extracted with 4.0 M Gu-HCl. Proteins of low buoyant density (p less than or equal to 1.38 g/ml) containing the disc enzymes and inhibitors were separated from proteoglycans of high buoyant density (p greater than or equal to 1.50 g/ml) by density gradient ultracentrifugation. Sephadex G-75F gel chromatography followed by trypsin affinity chromatography was then used to resolve disc proteolytic and trypsin inhibitory activities. The results obtained were strongly suggestive of the presence of a high molecular weight zymogen which upon activation generated a population of smaller molecular weight proteinases. The disc proteinases obtained by this process showed similar properties in terms of: their pH optima (7.4-7.6); their inhibition patterns by class-specific proteinase inhibitors; their variation of activity as a function of NaCl and lysine concentrations; and the hydrodynamic size of their proteoglycan degradation products. The activated disc neutral proteinase demonstrated many characteristics in common with plasmin; however, unlike the latter, the disc proteinases also showed some calcium dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号