首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polycystin-2 (PC2, TRPP2) is a Ca2+-permeable, nonselective cation channel implicated in Ca2+ transport and epithelial cell signaling. Although PC2 may contribute to Ca2+ transport in human term placenta, the regulatory mechanisms associated with Ca2+ handling in this tissue are largely unknown. In this work we assessed the regulation by Ca2+ of PC2 channel function from a preparation of apical membranes of human syncytiotrophoblast (PC2hst) reconstituted in a lipid bilayer system. Addition of either EGTA or BAPTA to the cis hemi-chamber, representing the cytoplasmic domain of the channel, and lowering Ca2+ to ∼0.6–0.8 nM, inhibited spontaneous PC2hst channel activity, with a time response dependent on the chelator tested. EGTA reduced PC2hst channel currents by 86%, with a t1/2 = 3.6 min, whereas BAPTA rapidly and completely (100%) eliminated channel activity with a t1/2 = 0.8 min. Subsequent titration with Ca2+ reversed the inhibition, which followed a Hill-type function with apparent dissociation constants of 1–5 nM, and 4 Ca2+ binding sites. The degree of inhibition by the cis Ca2+ chelator largely depended on increasing trans Ca2+. This was consistent with measurable Ca2+ transport through the channel, feeding the regulatory sites in the cytoplasmic domain. Interestingly, the reconstituted in vitro translated PC2 (PC2iv) was completely insensitive to Ca2+ regulation, suggesting that the regulatory sites are not intrinsic to the channel protein. Our findings demonstrate the presence of a Ca2+ microdomain largely accessible through the channel that controls PC2 function in human syncytiotrophoblast of term placenta.  相似文献   

3.
4.
Eukaryotic mRNAs possess a poly(A) tail at their 3′-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1–poly(A) and PABPC1–Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2–RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 μM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 μM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.  相似文献   

5.
Activated oncogenes restrict cell proliferation and transformation by triggering a DNA damage‐dependent senescence checkpoint in response to DNA hyper‐replication. Here, we show that loss of the p16INK4a cyclin‐dependent kinase inhibitor and melanoma tumour suppressor facilitates a DNA damage response after a hyper‐replicative phase in human melanocytes. Unlike cells expressing activated oncogenes, however, melanocytes depleted for p16INK4a display enhanced proliferation and an extended replicative lifespan in the presence of replication‐associated DNA damage. Analysis of human benign naevi confirmed that DNA damage and loss of p16INK4a expression co‐segregate closely. Thus, we propose that loss of p16INK4a facilitates tumourigenesis by promoting the proliferation of genetically unstable cells.  相似文献   

6.
7.
8.
Proteaceae, a largely southern hemisphere family consisting of 80 genera distributed in Australia and southern Africa as its centres of greatest diversity, also extends well in northern and southern America. Under this family, Grevillea robusta is a fast-growing species got popularity in farm and avenue plantations. Despite the ecological and economic importance, the species has not yet been investigated for its genetic improvement and genome-based studies. Only a few molecular markers are available for the species or its close relatives, which hinders  genomic and population genetics studies. Genetic markers have been intensively applied for the main strategies in breeding programs, especially for the economically important traits. Hence, it is of utmost priority to develop genomic database resources and species-specific markers for studying quantitative genetics in G. robusta. Given this, the present study aimed to develop de novo genome sequencing, robust microsatellites markers, sequence annotation and their validation in different stands of G. robusta in northern India. Library preparation and sequencing were carried out using Illumina paired-end sequencing technology. Approximately, ten gigabases (Gb) sequence data with 70.87 million raw reads assembled into 425,923 contigs (read mapped to 76.48%) comprising 455 Mb genome size (23 × coverage) generated through genome skimming approach. In total, 9421 simple sequence repeat (SSR) primer pairs were successfully designed from 13,335 microsatellite repeats. Afterward, a subset of 161 primer pairs was randomly selected, synthesized and validated. All the tested primers showed successful amplification but only 13 showed polymorphisms. The polymorphic SSRs were further used to estimate the measures of genetic diversity in 12 genotypes each from the states of Punjab, Haryana, Himachal Pradesh and Uttarakhand. Importantly, the average number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were recorded as 2.69, 0.356, 0.557 and 0.388, respectively. The availability of sequence information and newly developed SSR markers could potentially be used in various genetic analyses and improvements through molecular breeding strategies for G. robusta.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01035-w.  相似文献   

9.
In this study, dienelactone hydrolases (TfdEI and TfdEII) located on plasmid pJP4 of Cupriavidus necator JMP134 were cloned, purified, characterized and three dimensional structures were predicted. tfdEI and tfdEII genes were cloned into pET21b vector and expressed in E. coli BL21(DE3). The enzymes were purified by applying ultra-membrane filtration, anion-exchange QFF and gel-filtration columns. The enzyme activity was determined by using cis-dienelactone. The three-dimensional structure of enzymes was predicted using SWISS-MODEL workspace and the biophysical properties were determined on ExPASy server. Both TfdEI and TfdEII (Mr 25 kDa) exhibited optimum activity at 37°C and pH 7.0. The enzymes retained approximately 50% of their activity after 1 h of incubation at 50°C and showed high stability against denaturing agents. The TfdEI and TfdEII hydrolysed cis-dienelactone at a rate of 0.258 and 0.182 µMs−1, with a Km value of 87 µM and 305 µM, respectively. Also, TfdEI and TfdEII hydrolysed trans-dienelactone at a rate of 0.053 µMs−1 and 0.0766 µMs−1, with a Km value of 84 µM and 178 µM, respectively. The TfdEI and TfdEII kcat/Km ratios were 0.12 µM−1s−1and 0.13 µM−1s−1 and 0.216 µM−1s−1 and 0.094 µM−1s−1 for for cis- and trans-dienelactone, respectively. The kcat/Km ratios for cis-dienelactone show that both enzymes catalyse the reaction with same efficiency even though Km value differs significantly. This is the first report to characterize and compare reaction kinetics of purified TfdEI and TfdEII from Cupriavidus necator JMP134 and may be helpful for further exploration of their catalytic mechanisms.  相似文献   

10.
Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell–cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis‐ and trans‐synaptic protein complexes. Here, we present a 2.7 Å cryo‐EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C‐rich, YD‐shell, and ABD domains. A 1.5 Å crystal structure of the C‐rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS‐based rigid‐body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium‐dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis‐dimer is compatible with homomeric trans‐interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis‐ and trans‐synaptic interactions to construct functional neuronal circuits.  相似文献   

11.
12.
13.
We applied genome-wide allele-specific expression analysis of monocytes from 188 samples. Monocytes were purified from white blood cells of healthy blood donors to detect cis-acting genetic variation that regulates the expression of long non-coding RNAs. We analysed 8929 regions harboring genes for potential long non-coding RNA that were retrieved from data from the ENCODE project. Of these regions, 60% were annotated as intergenic, which implies that they do not overlap with protein-coding genes. Focusing on the intergenic regions, and using stringent analysis of the allele-specific expression data, we detected robust cis-regulatory SNPs in 258 out of 489 informative intergenic regions included in the analysis. The cis-regulatory SNPs that were significantly associated with allele-specific expression of long non-coding RNAs were enriched to enhancer regions marked for active or bivalent, poised chromatin by histone modifications. Out of the lncRNA regions regulated by cis-acting regulatory SNPs, 20% (n = 52) were co-regulated with the closest protein coding gene. We compared the identified cis-regulatory SNPs with those in the catalog of SNPs identified by genome-wide association studies of human diseases and traits. This comparison identified 32 SNPs in loci from genome-wide association studies that displayed a strong association signal with allele-specific expression of non-coding RNAs in monocytes, with p-values ranging from 6.7×10−7 to 9.5×10−89. The identified cis-regulatory SNPs are associated with diseases of the immune system, like multiple sclerosis and rheumatoid arthritis.  相似文献   

14.
15.
Psoriasis vulgaris (PsV) risk is strongly associated with variation within the major histocompatibility complex (MHC) region, but its genetic architecture has yet to be fully elucidated. Here, we conducted a large-scale fine-mapping study of PsV risk in the MHC region in 9,247 PsV-affected individuals and 13,589 controls of European descent by imputing class I and II human leukocyte antigen (HLA) genes from SNP genotype data. In addition, we imputed sequence variants for MICA, an MHC HLA-like gene that has been associated with PsV, to evaluate association at that locus as well. We observed that HLA-C06:02 demonstrated the lowest p value for overall PsV risk (p = 1.7 × 10−364). Stepwise analysis revealed multiple HLA-C06:02-independent risk variants in both class I and class II HLA genes for PsV susceptibility (HLA-C12:03, HLA-B amino acid positions 67 and 9, HLA-A amino acid position 95, and HLA-DQα1 amino acid position 53; p < 5.0 × 10−8), but no apparent risk conferred by MICA. We further evaluated risk of two major clinical subtypes of PsV, psoriatic arthritis (PsA; n = 3,038) and cutaneous psoriasis (PsC; n = 3,098). We found that risk heterogeneity between PsA and PsC might be driven by HLA-B amino acid position 45 (pomnibus = 2.2 × 10−11), indicating that different genetic factors underlie the overall risk of PsV and the risk of specific PsV subphenotypes. Our study illustrates the value of high-resolution HLA and MICA imputation for fine mapping causal variants in the MHC.  相似文献   

16.
The genus Pseudophoraspis Kirby, 1903 with three new species, Pseudophoraspis clavellata sp. n., Pseudophoraspis recurvata sp. n. and Pseudophoraspis incurvata sp. n., are reported from China for the first time. This extends the range of this genus northward from Vietnam. Species studied in the present paper are illustrated and described, and a key to these species based on males is provided.  相似文献   

17.
The DNAs that specify the α-amylase messenger RNAs found in the pancreas, salivary gland and liver of mouse strain A have been isolated by molecular cloning in phage λ. Amylase clones were studied by mRNA/DNA hybrid analysis in the electron microscope, restriction endonuclease site mapping and DNA sequencing. The Amy-2a gene, which specifies pancreatic α-amylase mRNA, measures 10·1 kb from cap to polyadenylation site and is interrupted by at least 9 intervening sequences. Amy-1a, which specifies both salivary gland and liver α-amylase mRNAs contains at least 10 introns. The distance between the cap and polyadenylation sites used in the salivary gland and the liver measures 22·9 kb and 20 kb, respectively. Introns are located at very similar, if not identical, positions within comparable regions of Amy-1a and Amy-2a. The first intron of Amy-1a, which interrupts sequences specifying 5′ non-translated regions of salivary gland and liver α-amylase mRNAs, has no counterpart in Amy-2a. Some introns exhibit considerable sequence homology, suggesting that Amy-1a and Amy-2a have evolved by duplication from a common split ancestor sequence. Repetitive sequence elements occur in the introns and flanking regions of these genes. Gene titration by quantitative autoradiography reveals only one copy of Amy-1a, but two copies of Amy-2a per haploid mouse genome. In addition to Amy-1a and Amy-2a, several other amylase-like DNA sequences exist in the mouse genome. No gross rearrangements of amylase DNA sequences can be detected between germline DNA and that of various mouse tissues.  相似文献   

18.
Calcium regulation of Ca2+-permeable ion channels is an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the transient receptor potential superfamily, is a nonselective cation channel with Ca2+ permeability. The molecular mechanisms associated with PC2 regulation by Ca2+ remain ill-defined. We recently demonstrated that PC2 from human syncytiotrophoblast (PC2hst) but not the in vitro translated protein (PC2iv), functionally responds to changes in intracellular (cis) Ca2+. In this study we determined the regulatory effect(s) of Ca2+-sensitive and -insensitive actin-binding proteins (ABPs) on PC2iv channel function in a lipid bilayer system. The actin-bundling protein α-actinin increased PC2iv channel function in the presence of cis Ca2+, although instead was inhibitory in its absence. Conversely, filamin that shares actin-binding domains with α-actinin had a strong inhibitory effect on PC2iv channel function in the presence, but no effect in the absence of cis Ca2+. Gelsolin stimulated PC2iv channel function in the presence, but not the absence of cis Ca2+. In contrast, profilin that shares actin-binding domains with gelsolin, significantly increased PC2iv channel function both in the presence and absence of Ca2+. The distinct effect(s) of the ABPs on PC2iv channel function demonstrate that Ca2+ regulation of PC2 is actually mediated by direct interaction(s) with structural elements of the actin cytoskeleton. These data indicate that specific ABP-PC2 complexes would confer distinct Ca2+-sensitive properties to the channel providing functional diversity to the cytoskeletal control of transient receptor potential channel regulation.  相似文献   

19.
Analyses of spontaneous mutation have shown that total genome‐wide mutation rates are quantitatively similar for most prokaryotic organisms. However, this view is mainly based on organisms that grow best around neutral pH values (6.0–8.0). In particular, the whole‐genome mutation rate has not been determined for an acidophilic organism. Here, we have determined the genome‐wide rate of spontaneous mutation in the acidophilic Acidobacterium capsulatum using a direct and unbiased method: a mutation‐accumulation experiment followed by whole‐genome sequencing. Evaluation of 69 mutation accumulation lines of Acapsulatum after an average of ~2900 cell divisions yielded a base‐substitution mutation rate of 1.22 × 10−10 per site per generation or 4 × 10−4 per genome per generation, which is significantly lower than the consensus value (2.5−4.6 × 10−3) of mesothermophilic (~15–40°C) and neutrophilic (pH 6–8) prokaryotic organisms. However, the insertion‐deletion rate (0.43 × 10−10 per site per generation) is high relative to the base‐substitution mutation rate. Organisms with a similar effective population size and a similar expected effect of genetic drift should have similar mutation rates. Because selection operates on the total mutation rate, it is suggested that the relatively high insertion‐deletion rate may be balanced by a low base‐substitution rate in Acapsulatum, with selection operating on the total mutation rate.  相似文献   

20.
Spontaneous preterm birth (PTB, <37 weeks gestation) is a major public health concern, and children born preterm have a higher risk of morbidity and mortality throughout their lives. Recent studies suggest that fetal DNA methylation of several genes varies across a range of gestational ages (GA), but it is not yet clear if fetal epigenetic changes associate with PTB. The objective of this study is to interrogate methylation patterns across the genome in fetal leukocyte DNA from African Americans with early PTB (241/7–340/7 weeks; N = 22) or term births (390/7–406/7weeks; N = 28) and to evaluate the association of each CpG site with PTB and GA. DNA methylation was assessed across the genome with the HumanMethylation450 BeadChip. For each individual sample and CpG site, the proportion of DNA methylation was estimated. The associations between methylation and PTB or GA were evaluated by fitting a separate linear model for each CpG site, adjusting for relevant covariates. Overall, 29 CpG sites associated with PTB (FDR<.05; 5.7×10−10<p<2.9×10−6) independent of GA. Also, 9637 sites associated with GA (FDR<.05; 9.5×10−16<p<1.0×10−3), with 61.8% decreasing in methylation with shorter GA. GA-associated CpG sites were depleted in the CpG islands of their respective genes (p<2.2×10−16). Gene set enrichment analysis (GSEA) supported enrichment of GA-associated CpG sites in genes that play a role in embryonic development as well as the extracellular matrix. Additionally, this study replicated the association of several CpG sites associated with gestational age in other studies (CRHBP, PIK3CD and AVP). Dramatic differences in fetal DNA methylation are evident in fetuses born preterm versus at term, and the patterns established at birth may provide insight into the long-term consequences associated with PTB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号