首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agents that inhibit DNA synthesis increase the frequency of methotrexate resistance and gene amplification in cultured mammalian cells. Chinese hamster ovary cells blocked with hydroxyurea rereplicated dihydrofolate reductase gene sequences within a single cell cycle upon release from the block (Mariani, B.D., and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). Perturbation of DNA synthesis was postulated to result in misfiring of replicon initiation, subsequent over-replication of DNA sequences, and amplification of specific genes. To test this hypothesis, we have exposed Chinese hamster ovary cells pulsed with bromodeoxyuridine to three agents that inhibit DNA synthesis and enhance gene amplification: UV irradiation, hydroxyurea, and aphidicolin. After release from the block, the progression of cells throughout the cell cycle was analyzed by flow cytometry through simultaneous measurement of total cellular DNA content and bromodeoxyuridine-labeled DNA. Although the cell cycle effects varied depending on the agent used for the block, in all cases a subset of cells that were in S phase at the time of the block exhibited DNA histograms with greater than 4C DNA content at various times after release and prior to cell division. Cells with the excess DNA were approximately 10-fold more resistant to methotrexate compared to treated cells with normal DNA content or untreated cells. Therefore, cells in S phase at the time of the block produce excess DNA per cell prior to division, and this over-replicated DNA may be relevant to gene amplification and drug resistance.  相似文献   

3.
When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.  相似文献   

4.
The kinetics of expression of radiation-induced micronuclei (MN) in synchronized Chinese hamster cells (CHO) was examined. The purpose of the study was to determine if the cell cycle distribution of a population significantly influences the levels of radiation induced MN, thereby obscuring the exact quantification of the radiation effect. Cells were synchronized by centrifugal elutriation, irradiated, and then different phases of the cell cycle were examined for: cell cycle progression, division probability, and temporal expression of MN. The results demonstrate that the time interval for maximal MN expression is long enough that the position of cells in the cell cycle and radiation induced division delays do not prevent the majority of cells from completing their first post-irradiation mitosis, therefore, expressing MN. By following the progression of synchronized cell populations by flow cytometry and also examining the time of division of individual cells for 24 hr after irradiation, we observed that the maximum number of cells from all phases of the cell cycle are in their first post-irradiation interphase at that time, thus explaining the MN results.  相似文献   

5.
Wild-type Chinese hamster ovary cells (AA8) and five excision-deficient clones derived from the AA8 line (UV-4, UV-5, UV-20, UV-24 and UV-41) were exposed to ultraviolet light and then analyzed for their ability to incorporate [3H]thymidine and to initiate as well as elongate replicon-sized DNA fragments. After exposure to ultraviolet light, all cell lines exhibited a depression in the rate of thymidine incorporation. For exposures of 4.0 J/m2 or higher the wild-type cells recovered normal rates of thymidine incorporation within a few hours, while none of the excision-deficient lines exhibited complete recovery. For fluences below 4.0 J/m2 all but the UV-5 line exhibited at least some recovery. The ability to elongate DNA chains appeared to correlate with the thymidine incorporation data, with the UV-5 line exhibiting the strongest blockage of DNA chain elongation, the AA8 line exhibiting the least blockage, and the UV-20 line exhibiting an intermediate response. All cell lines exhibited a decrease in the distance between replication origins, thus supporting models which propose that exposure to ultraviolet light results in the use of alternative sites for the initiation of replication.  相似文献   

6.
The microtubule nucleating capacity of chromosomes was tested in vitro in lysates of Chinese hamster ovary cells. Colcemid-blocked mitotic cells were lysed with the detergent Triton X-100, incubated with exogenous porcine brain tubulin, attached to electron microscope grids and observed as whole-mounts. Under suitable conditions, greater than 98% of the chromosomes gave rise to microtubules at their kinetochore regions, thus unequivocally demonstrating that chromosomes are competent to initiate specifically microtubule formation. The average number of microtubules that polymerized onto a chromosome was 8 +/- 5, and greater than 36% of the chromosomes had between 10 and 19 microtubules per kinetochore region. We conclude that under the lysis conditions employed, virtually all the chromosomes retain their kinetochores, and that the kinetochores retain a substantial fraction of their microtubule nucleating capacity.  相似文献   

7.
《The Journal of cell biology》1987,105(6):2713-2721
Acidification of endocytic compartments is necessary for the proper sorting and processing of many ligands and their receptors. Robbins and co-workers have obtained Chinese hamster ovary (CHO) cell mutants that are pleiotropically defective in endocytosis and deficient in ATP- dependent acidification of endosomes isolated by density centrifugation (Robbins, A. R., S. S. Peng, and J. L. Marshall. 1983. J. Cell Biol. 96:1064-1071; Robbins, A. R., C. Oliver, J. L. Bateman, S. S. Krag, C. J. Galloway, and I. Mellman. 1984. J. Cell Biol. 99:1296-1308). In this and the following paper (Yamashiro, D. J., and F. R. Maxfield. 1987. J. Cell Biol. 105:2723-2733) we describe detailed studies of endosome acidification in the mutant and wild-type CHO cells. Here we describe a new microspectrofluorometry method based on changes in fluorescein fluorescence when all cellular compartments are equilibrated to the same pH value. Using this method we measured the pH of endocytic compartments during the first minutes of endocytosis. We found in wild- type CHO cells that after 3 min, fluorescein-labeled dextran (F-Dex) was in endosomes having an average pH of 6.3. By 10 min, both F-Dex and fluorescein-labeled alpha 2-macroglobulin (F-alpha 2M) had reached acidic endosomes having an average pH of 6.0 or below. In contrast, endosome acidification in the CHO mutants DTG 1-5-4 and DTF 1-5-1 was markedly slowed. The average endosomal pH after 5 min was 6.7 in both mutant cell lines. At least 15 min was required for F-Dex and F-alpha 2M to reach an average pH of 6.0 in DTG 1-5-4. Acidification of early endocytic compartments is defective in the CHO mutants DTG 1-5-4 and DTF 1-5-1, but pH regulation of later compartments on both the recycling pathway and lysosomal pathway is nearly normal. The properties of the mutant cells suggest that proper functioning of pH regulatory mechanisms in early endocytic compartments is critical for many pH-mediated processes of endocytosis.  相似文献   

8.
The relationship between centriole formation and DNA synthesis was investigated by examining the effect of taxol on the centriole cycle and the initiation of DNA synthesis in synchronized cells. The centriole cycle was monitored by electron microscopy of whole-mount preparations [Kuriyama and Borisy, J. Cell Biol., 1981, 91:814-821]. A short daughter centriole appeared in perpendicular orientation to each parent during late G1 or early S and elongated slowly during S to G2. Addition of 5-20 micrograms/ml taxol to a synchronous population of cells in S phase did not inhibit centriole elongation; rather, elongation was accelerated. In contrast, when taxol was added to M phase or early G1 cells, centriole duplication was completely inhibited. The taxol block was reversible since nucleation and elongation of centrioles resumed as soon as the drug was removed. Cells exposed to taxol progressed through the cell cycle and became blocked in mitosis, as indicated by an increase in the mitotic index, but eventually the mitotic arrest was overcome, resulting in formation of multinucleated cells. A peak in mitotic index was seen in the following generation, indicating that chromosomes duplicated in the presence of taxol. Incorporation of 3H-thymidine followed by autoradiography confirmed that DNA synthesis was initiated in the presence of taxol even though formation of daughter centrioles was inhibited. It seems, therefore, that centriole duplication is not a prerequisite for entry into S phase. Since DNA synthesis has already been demonstrated not to be necessary for centriole duplication, these two events, normally coordinated in time, appear to be independent of each other.  相似文献   

9.
During bipolar mitosis a pair of centrioles is distributed to each cell but the activities of the two centrioles within the pair are not equivalent. The parent is normally surrounded by a cloud of pericentriolar material that serves as a microtubule-organizing center. The daughter does not become associated with pericentriolar material until it becomes a parent in the next cell cycle (Rieder, C.L., and G. G. Borisy , 1982, Biol. Cell., 44:117-132). We asked whether the microtubule-organizing activity associated with a centriole was dependent on its becoming a parent. We induced multipolar mitosis in Chinese hamster ovary cells by treatment with 0.04 micrograms/ml colcemid for 4 h. After recovery from this colcemid block, the majority of cells divided into two, but 40% divided into three and 2% divided into four. The tripolar mitotic cells were examined by antitubulin immunofluorescence and by high voltage electron microscopy of serial thick (0.25-micron) sections. The electron microscope analysis showed that centriole number was conserved and that the centrioles were distributed among the three spindle poles, generally in a 2:1:1 or 2:2:0 pattern. The first pattern shows that centriole parenting is not prerequisite for association with pole function; the second pattern indicates that centrioles per se are not required at all. However, the frequency of midbody formation and successful division was higher when centrioles were present in the 2:1:1 pattern. We suggest that the centrioles may help the proper distribution and organization of the pericentriolar cloud, which is needed for the formation of a functional spindle pole.  相似文献   

10.
Pesticide clastogenicity in Chinese hamster ovary cells   总被引:3,自引:0,他引:3  
M F Lin  C L Wu  T C Wang 《Mutation research》1987,188(3):241-250
Paraquat, alachlor, butachlor, phorate and monocrotophos, several of the most extensively used pesticides in Taiwan, were investigated for their clastogenicity using chromosome aberration (CAb) induction in Chinese hamster ovary (CHO) cells. Significance levels of the binomial trend analysis and binomial mutagenicity data test were two criteria for the summary judgement of the pesticide clastogenicity. Except for phorate, all pesticides tested were clastogenic to CHO cells in the absence of in vitro metabolic activation by S9. 5 microliters/ml rat-liver extract, S9, were used as the source of in vitro metabolic activation. 3 different outcomes were found after the addition of S9. Paraquat: significant decrease in induced CAbs. Monocrotophos: concomitant occurrence of decreased cytotoxicity and increased clastogenicity. Alachlor, butachlor and phorate: increased cytotoxicities with no sign of enhancement in clastogenicity.  相似文献   

11.
12.
When Chinese hamster ovary cells are incubated with [terminal methylenes-3H]spermidine, radioactivity is incorporated into a single cellular protein, eukaryotic initiation factor 4D (eIF-4D), through posttranslational synthesis of the amino acid hypusine (N epsilon-(4-amino-2-hydroxybuyly)lysine). The effect of spermidine depletion on this protein modification reaction was studied by high resolution two-dimensional gel electrophoresis. Factor eIF-4D containing both [3H]lysine and [3H]hypusine was detected as one of the major labeled cellular proteins on the fluorographic map of the proteins from Chinese hamster ovary cells that had been incubated with [3H]lysine. When these cells were depleted of spermidine by the use of DL-alpha-difluoromethylornithine before addition of [3H]lysine, no radiolabeling of this mature eIF-4D (hypusine form, Mr approximately 18,000; pI approximately 5.3) occurred. Instead, a new radiolabeled protein (Mr 18,000; pI 5.1) that contained [3H]lysine but no [3H]hypusine or [3H]deoxyhypusine was seen. This protein was identified as an eIF-4D precursor by comparison of the two-dimensional map of its tryptic peptides with that of the tryptic peptides from [3H]lysine-labeled eIF-4D. Further comparisons also suggest that additional post-translational modification processes are involved in the biogenesis of eIF-4D.  相似文献   

13.
14.
Synchronous G1 cells were given a priming dose of heat (45.5 degrees C for 15 min) and then heated and irradiated 6-120 h later. Compared to heat radiosensitization for cells irradiated 10 min after the priming heat dose (thermal enhancement ratio, TER of 2.6 for a 10-fold reduction in survival), heat radiosensitization 18-24 h after the priming heat dose was less (i.e., TER of 1.6 for radiation at 24 h compared with heat-radiation at 24 h). A thermotolerance ratio (TTR) at 24 h was calculated to be 2.6/1.6 = 1.6. TERs at 100-fold or 1000-fold reduction in survival and ratios of slopes of radiation survival curves also showed that the cells developed a similar amount of thermotolerance for heat radiosensitization at 18-24 h. Furthermore, since the TER for heat radiosensitization increased with heat killing either from the priming heat dose or the second heat dose in a similar manner for single or fractionated doses, the TER for nonthermotolerant and thermotolerant cells was the same when related to the heat damage (i.e., amount of killing from heat alone). When the radiation response of cells heated and irradiated 6-120 h after the priming heat dose was compared with the response of cells receiving radiation only, changes in TER as a function of time after the initial priming heat dose were shown to involve: recovery of heat damage interacting with the subsequent radiation dose, thermotolerance for heat radiosensitization, and redistribution of cells surviving the first heat dose into radioresistant phases of the cell cycle. In fact, redistribution resulted in a minimal TER at 72 h for heat-radiation compared with radiation alone, instead of at 24 h where maximal thermotolerance for heat killing was observed [P. K. Holahan and W. C. Dewey, Radiat. Res. 106, 111 (1986)]. These observations are discussed relative to clinical considerations and similar results reported from in vivo experiments.  相似文献   

15.
Chinese hamster ovary (CHO) cells and appropriate drug-resistant mutants derived from them have been analyzed for nucleoside kinase activities relevant to the phosphorylation of adenosine, deoxyadenosine, deoxyguanosine and deoxycytidine and for resistance to a variety of nucleoside analogs. Fractionation of extracts by DEAE-cellulose chromatography revealed three major peaks of activity. Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20), the first to elute from the column is responsible for the majority of the deoxyadenosine phosphorylation in cell extracts and, according to resistance data, appears to phosphorylate most adenosine analogs tested, including 9-beta-D-arabinosyladenine (ara-A). A deoxyguanosine kinase, the second enzyme to elute from the column, was responsible for the majority of deoxyguanosine and deoxyinosine phosphorylation in cell extracts. The function of this enzyme in cell metabolism is unclear. 2-Chlorodeoxyadenosine, on the other hand, appeared from resistance data to be phosphorylated, at least in part, by deoxycytidine kinase (ATP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74), which in cell extracts could also phosphorylate deoxyguanosine and deoxyadenosine, though much less efficiently than deoxycytidine.  相似文献   

16.
The protein synthesis patterns at various stages of the cell cycle of Chinese hamster ovary cells were examined by labelling cells with [35S]methionine and then separating the proteins by isoelectric focussing and two-dimensional, nonequilibrium pH gradient gel electrophoresis. We have observed a number of proteins which display quantitative differences in synthesis at specific cell cycle stages and of these the alpha- and beta-tubulins have been identified. A few proteins appear to be uniquely synthesized at specific times during the cell cycle. These include the histones and a modified version of them, which are synthesized only in S phase, and a pair of 21 kilodalton (kDa), pI 5.5 proteins, which appear only in late G2 and mitosis. We have also identified a 58-kDa, pI 7.5 protein which is present at all cell cycle stages except during late G2. This protein appears to have the same temporal properties as a 57-kDa protein called "cyclin" originally described in sea urchin embryos.  相似文献   

17.
Mammalian cells were shown to fuse after direct electric pulsation of the plated cells in culture. The extent of fusion was controlled by the duration of the post-pulse incubation. Formation of polynucleated cells was slow, even at 37 degrees C. Pre-pulse incubation with colchicine increased the fusion yield slightly. Cytoskeletal organization during the post-pulse incubation was observed using immunofluorescence techniques. Microfilaments were unaffected, but microtubules disappeared during the first minutes following the pulse, and then reformed on subsequent incubation.  相似文献   

18.
The phosphorylation patterns of proteins were examined during the cell cycle of Chinese hamster ovary cells. This was accomplished by labeling synchronized cells at various times with [32P]orthophosphate and separating the proteins by both isoelectric focusing and nonequilibrium pH gradient two-dimensional gel electrophoresis. The most dramatic changes occurred during late G2/M when approximately eight proteins (including vimentin, lamin B, and histones 1 and 3) showed increased phosphorylation. Ten other proteins appeared to be uniquely phosphorylated during late G2/M. Of these 10 proteins, seven were no longer phosphorylated shortly after mitosis. There is also at least one protein which showed a relative decrease in phosphorylation during late G2/M.  相似文献   

19.
Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT) analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO) analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号