首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Downed woody material (fallen logs) offers ground-dwelling spiders (Araneae) ideal sites for nesting and foraging, but little is known about what characteristics of dead wood influence spider assemblages. In a maple forest of Forillon National Park, in eastern Québec (Canada), spider assemblages on, adjacent to, and away from fallen logs were compared. We also tested how log type (coniferous vs. deciduous) and decomposition stage influenced spider assemblages. Sampling was done for an intensive four-week period using both litter samples and pitfall traps. A total of 5613 spiders representing 83 species from 16 families was collected. Spiders were affected by the presence of logs, as both species diversity and total number of individuals collected were significantly higher on the log surface compared to the forest floor. Ordination analysis revealed a distinct compositional difference between the spider fauna found on the wood surface compared to the forest floor. Wood type and decomposition stage had few significant effects on spider assemblages, except that less decayed logs supported higher spider diversity than logs in advanced stages of decay. Dead wood is clearly important for generalist predators such as spiders, further supporting the conservation importance of fallen logs in northern forest ecosystems.  相似文献   

2.
The removal of timber during harvesting substantially reduces important invertebrate habitat, most noticeably microhabitats associated with fallen trees. Oribatid mite diversity in downed woody material (DWM) using species-level data has not been well studied. We investigated the influence of decaying logs on the spatial distribution of oribatid mites on the forest floor at the sylviculture et aménagement forestiers écosystémique (SAFE) research station in the Abitibi region in NW Québec. In June 2006, six aspen logs were selected for study, and samples were taken at three distances for each log: directly on top of the log (ON), directly beside the log (ADJ) and at least one metre away from the log and any other fallen wood (AWAY). Samples ON logs consisted of a litter layer sample, an upper wood sample and an inner wood sample. Samples at the ADJ and AWAY distances consisted of litter samples and soil cores. The highest species richness was collected ON logs, and logs harboured a distinct oribatid species composition compared to nearby forest floor. There were species-specific changes in abundance with increasing distance away from DWM, which indicates an influence of DWM in structuring oribatid assemblages on the forest floor. Additionally, each layer (litter, wood and soil) exhibited a unique species composition and hosted a different diversity of oribatid mites. This study further highlights the importance of DWM to forest biodiversity by creating habitat for unique assemblages of oribatid mites.  相似文献   

3.
Abstract In the dry eucalypt forests of north‐eastern New South Wales, Australia, cattle grazing occurs at low intensities and is accompanied by frequent low‐intensity burning. This study investigated the combined effects of this management practice on the ground‐dwelling and arboreal (low vegetation) spider assemblages. Spiders were sampled at 49 sites representing a range of grazing intensities, using pitfall trapping, litter extraction and sweep sampling. A total of 237 spider morphospecies from 37 families were collected using this composite sampling strategy. The abundance, richness, composition and structure of spider assemblages in grazed and ungrazed forest sites were compared and related to a range of environmental variables. Spider assemblages responded to a range of environmental factors at the landscape, habitat and microhabitat scales. Forest type, spatial relationships and habitat variability at the site scale were more important in determining spider assemblages than localized low‐intensity grazing and burning. However, it is possible that a threshold intensity of grazing may exist, above which spiders respond to grazing and burning. Although low‐intensity grazing and burning may not affect spider assemblages below a threshold stocking rate, that stocking rate has yet to be established.  相似文献   

4.
1. Although spiders can colonise ecosystems by air, dispersal capabilities differ among spider species. Web‐building spiders are thought to balloon at higher rates than hunting spiders. Spider success in agricultural systems may also depend on habitat preferences. Few studies have examined the success of aerially dispersing spiders in crop systems, and information about the dispersal capabilities of spiders in putative source habitats is limited. 2. Spiders were monitored in the air and on the foliage of vineyards and adjacent oak woodland in order to compare the aerial spider faunas between these disparate habitats and to determine whether highly dispersive species contributed disproportionately to the spider community in vineyards. 3. The results show that most aerially dispersing spiders in both habitats were web‐building dwarf spiders, Erigone spp. (Linyphiidae), although hunting spiders were also well represented in the air, especially in oak woodland. Most woodland spiders in the air appeared to be residents of oak woodland and probably dispersed only short distances. 4. Conversely, only a subset of the aerial spider fauna established in vineyards in high numbers. Spiders that dominated the aerial fauna were under‐represented on vineyard foliage, whereas several hunting spiders dispersed aerially at low rates but dominated vineyard spider composition. 5. These results suggest that aerial dispersal ability may allow spiders to reach crop systems, but that establishment depends on habitat preferences and/or competitive ability.  相似文献   

5.
Elephant impacts on spider assemblages, and the potential use of spiders as indicators of habitat changes was assessed in central Maputaland, South Africa. Three habitats, namely undisturbed sand forest, elephant disturbed sand forest and mixed woodland, were sampled. To ensure a thorough representation of all spider guilds, spiders were collected by tree beating, sweep netting, active searching, leaf litter sifting and pitfall traps. In total, 2808 individual spiders, representing 36 families, 144 determined genera and 251 species were collected. Spider abundance was highest in the undisturbed sand forest (n = 1129, S = 179), followed by elephant disturbed sand forest (n = 1006, S = 165) and mixed woodland (n = 673, S = 171). Assemblages of the two sand forests were more similar than to the mixed woodland assemblage. Active hunting species were indicators of the more open vegetation of elephant disturbed sand forest (six active hunters, no web‐builders) and mixed woodland (ten active hunters, one web‐builder), whereas web‐builders are indicators of the dense, complex vegetation structure of undisturbed sand forest (six web‐builders, three active hunters). Elephant‐induced changes to the vegetation structure in this high diversity, high endemism region result in changes in the composition of spider assemblages, and may need to be mitigated by management intervention.  相似文献   

6.
The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground‐dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small‐scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes.  相似文献   

7.
We studied the decomposition of Cyrilla racemiflora logs over a 13‐yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood‐inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs collected from the tropical dry forest than the tropical wet forest. High moisture content and a low animal diversity on the logs in the wet forest seem to retard wood decay in this habitat. Wood decay rates in the tropical dry forest can be related to the high diversity of species and functional groups of wood‐inhabiting organisms.  相似文献   

8.
Urbanization and urban landscape characteristics greatly alter plant and animal species richness and abundances in negative and positive directions. Spiders are top predators, often considered to be sensitive to habitat alteration. Studies in urban environments frequently focus on ground-dwelling spiders or on spiders in built structures, leaving aside foliage spiders. Effects of habitat, landscape type and structure and local characteristics on spider species composition, richness and relative abundance were evaluated in urban green patches in a temperate city of South America. We also assess whether Salticidae could be an indicator group for the broader spider community in the urban environment. Spiders were sampled with a G-VAC (aspirator) in urban green patches in Córdoba city, Argentina, in urban, suburban and exurban habitats (18 sites; six per habitat) and local and landscape traits were assessed. Overall, the exurban was richer than the urban habitat, however, at the site level Salticidae richness and abundance (but not the total spider assemblage) were significantly lower in urban sites. Species composition moderately differed between urban and exurban sites. Results indicate that on urban green spaces a low impervious surface cover, a coverage of trees, herbaceous vegetation and a vertical structure of vegetation at least up to 1 m in height contribute to higher richness and abundance of spiders, Salticidae being more sensitive than the overall spider community to local effects. In addition, Salticidae richness can predict 74% of the total spider richness recorded and may be used as spider diversity bio-indicators in this climatic region.  相似文献   

9.
Butterfly, spider, and plant species richness and diversity were investigated in five different land-use types in Sardinia. In 16 one-hectare plots we measured a set of 15 environmental variables to detect the most important factors determining patterns of variation in species richness, particularly endemicity. The studied land-use types encompassed homogeneous and heterogeneous shrublands, shrublands with tree-overstorey, Quercus forest and agricultural land. A total of 30 butterfly species, among which 10 endemics, and 50 spider (morpho)species, were recorded. Butterfly and spider community composition differed according to land-use type. The main environmental factors determining diversity patterns in butterflies were the presence of flowers and trees. Spiders reacted mainly to habitat heterogeneity and land-use type. Traditional land-use did not have adverse effects on the diversity of butterflies, spiders, or plants. The number of endemic butterfly species per treatment increased with total species richness and altitude. Butterfly and spider richness did not co-vary across the five land-use types. Butterflies were, however, positively associated with plant species richness and elevation, whereas spiders were not. Conclusively, butterflies did not appear to be good indicators for spider diversity and species richness at the studied sites.  相似文献   

10.
2004年4—10月,在甘肃子午岭天然次生林区采用巴氏诱罐法采集土壤蜘蛛2164头,隶属于19科43种。研究表明辽东栎林(Quercusliaotungensis)、油松林(Pinustabulaeformis)和杨树林(Populusdavidiana)3种森林植被类型中土壤蜘蛛群落组成有明显的差异;不同生境蜘蛛群落的组成成分和多样性指数各异;从各生境中捕获的蜘蛛个体数量分析,皿蛛科、平腹蛛科和科狼蛛科的数量最多,优势类群的组成相似;各生境类型中蜘蛛功能集团的组成及多样性也有明显差异。同时,分析了影响蜘蛛群落组成和多样性的主要因子是生境的植被类型和生境异质性。  相似文献   

11.
任海庆  陈建  袁兴中  刘杰 《生态学报》2016,36(6):1774-1781
为探索天然林和橡胶林蜘蛛多样性现状,于2010年8月在海南黎母山自然保护区选取天然林和橡胶林,采用扫网法、陷阱法和单位面积法收集蜘蛛标本,分析两种林型之间蜘蛛组成、多样性和功能群差异,并以蜘蛛科和数量分布为属性进行主成分分析(PCA),探讨林型中样方之间蜘蛛群落的相似性。共采集蜘蛛标本3609头,用于统计分析的成蛛969头,归属于23科,162种。天然林20科,100种,优势类群为跳蛛科、球蛛科和园蛛科;橡胶林17科,87种,优势类群为肖蛸蛛科、狼蛛科和猫蛛科。从蜘蛛的数量分布看,橡胶林蜘蛛个体密度显著高于天然林;而天然林多样性指数和丰富度指数显著高于橡胶林。橡胶林中结圆网型和游猎型蜘蛛显著高于天然林,结皿网型显著低于天然林,伏击型不存在显著性差异。PCA分析结果表明,24个样方趋于分成天然林和橡胶林2组,并且天然林样方之间相似性极高,而橡胶林样方之间相似性相对较低。以上结果表明:(1)橡胶林替代天然林后蜘蛛群落结构发生变化,多样性降低;(2)增加生境结构的复杂性和减少人为干扰对保护和恢复物种多样性有重要意义。  相似文献   

12.
Arndt Brüning 《Oecologia》1991,86(4):478-483
Summary The predation on spiders in a forest ecosystem by a colony of red wood ants, Formica polyctena, was estimated using a barrier to isolate the colony. Of the ants' total prey, 4.6% were spiders. In order to estimate the effect of F. polyctena within their hunting area on the spider population, the spiders' population density was studied inside and outside the hunting area. Samples of the forest floor were taken, spider webs were counted and pitfall traps were used. No significant difference was found in density or composition of the spider fauna inside and outside the hunting area.  相似文献   

13.
Abstract. Seedling densities on the forest floor and on elevated microsites (logs and stumps) were compared for eight woody species in a temperate rain forest in southern Chile. Degree of association with elevated microsites varied significantly between species, showed no systematic relationship with reported shade tolerance, but was significantly negatively correlated with seed mass. Large-seeded Podocarpus nubigena established preferentially on undisturbed forest floor sites, whereas seedlings of small-seeded species such as Nothofagus nitida and Laurelia philippiana were found mainly on fallen logs and stumps. The abundance of large seedlings and saplings of N. nitida on logs/stumps, and the growth forms of canopy trees, confirm that recruitment of this species occurs mainly on decaying wood. The relationship between seed size and microsite preferences may be caused by effects of seed size on (1) ability to establish in forest floor litter and (2) retention of seeds on logs. Seedling occupancy of logs and stumps varied with state of decay. Few seedlings of any species were present on logs in the early stages of decay. N. nitida established earlier than the other species, attaining maximum abundance on wood in the middle decay classes. Species richness and overall seedling abundance were highest on wood in advanced stages of decay. Seed size differences are suggested as a determinant of differential utilization of forest floor heterogeneity, and hence of plant species coexistence.  相似文献   

14.
1. Spiders frequently disperse and colonise habitats through ballooning, a passive aerial dispersal process. Ballooning is pre‐eminent in open habitat spider communities and its propensity can be modulated by habitat conditions and availability, and by life‐history traits such as body size, degree of specialisation, and feeding behaviour. 2. Using spiders from the canopy and understorey of a north‐temperate hardwood forest as a model system, our main objectives were to detect if foliage spiders of a mature forest disperse through ballooning, and identify life‐history traits that influence ballooning propensity. 3. Our results demonstrate that foliage spiders living in the canopy and understorey of a mature forest do balloon, and in some cases have very high ballooning propensities similarly to open field spiders. Species level models showed that small body size had a strong positive effect on ballooning for juveniles of species with large‐bodied adults, while individuals of small‐bodied species initiated ballooning regardless of size, habitat or development stage. A generalised linear mixed model indicated that small size web‐building spiders from the Retro Tibial Apophysis (RTA) and Orbicularia clades had the highest propensity for foliage spiders of this north‐temperate hardwood forest. 4. In conclusion, we provide the first demonstration that forest spiders can have high ballooning propensities and that ballooning propensity is negatively affected by body size and positively affected by the prominent use of silk to catch prey. However, spiders originating from the canopy and understorey of a north‐temperate hardwood forest did not differ in their ballooning propensities.  相似文献   

15.
Forest management has highly modified the structure of the European forests. Harvesting and post-harvest regeneration leads to a simplified forest structure. Our main objective was to detect the effects of habitat structure and forest age on the ground-dwelling spider diversity and assemblage composition of poplar forests at the Hungarian Great Plain. Our results demonstrate that the rarefaction diversity and the number of forest specialists closely correlated with the structural parameters of the forest floor, however, the age and canopy closure did not influence these parameters. According to redundancy analysis, the composition of spider assemblages was determined solely by habitat structure, with habitat structure having a major effect on the species composition and diversity of spider assemblages. A direct effect of forest age on the spider assemblages was not detected, due to the presence of different habitat types in the surrounding landscape, which may serve as suitable habitats for source-populations of spiders with different habitat requirements. Our results highlight the importance structural complexity of forests for maintaining forest spider diversity and preserving the regional species pool of spiders.  相似文献   

16.
For speciose, but poorly known groups, such as terrestrial arthropods, functional traits present a potential avenue to assist in predicting responses to environmental change. Species turnover is common along environmental gradients, but it is unclear how this is reflected in species traits. Community‐level change in arthropod traits, other than body size, has rarely been explored across spatial scales comparable to those examined here. We hypothesized that the composition and morphological traits of spider assemblages would differ across a gradient of climate and habitat structure. We examined foliage‐living spider assemblages associated with Themeda triandra grasslands along a 900 km climatic gradient in south‐eastern Australia. We used sweep‐netting to collect T. triandra‐associated spiders and counted juveniles and identified adults. We also measured morphological traits of adult spiders and noted their hunting mode. Associations with measures of habitat structure were less consistent than relationships with climate. Both juvenile and adult spiders were more abundant in warmer sites, although species richness was not affected by temperature. We found distinct turnover in species composition along the climatic gradient, with hunting spiders, particularly crab spiders (Thomisidae), making up a greater proportion of assemblages in warmer climates. A range of traits of spiders correlated with the climatic gradient. For example, larger spider species and species that were active hunters were more common in warmer climates. Changes in morphological traits across species, rather than within species drove the morphology‐climate relationship. Strong climate‐trait correlations suggest that it may be possible to predict changes in functional traits of assemblages in response to anthropogenic disturbances such as climate change.  相似文献   

17.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

18.
1. We compared assemblages of ground‐active, terrestrial beetles and spiders from different areas of river red gum Eucalyptus camaldulensis floodplain forest in subhumid, south‐eastern Australia before and for 2 years following a managed flood to determine whether the Flood Pulse Concept is an appropriate ecological model for this regulated, lowland river‐floodplain system. 2. Immediately following flooding, the abundance, species richness and biomass of beetles were greatest at sites that had been inundated for the longest period (approximately 4 months). The abundance, species richness and biomass of spiders were not reduced at sites that were flooded for 4 months compared with unflooded or briefly flooded areas. Sites recently flooded for several months had high densities of predatory, hygrophilic beetles (Carabidae) and spiders (Lycosidae). 3. Over the 2 years following the flood, beetles generally were more abundant at sites that had been inundated for longer. At all sampling times, the species richness of beetles at sites increased with the length of time sites were inundated, even before the flood. Neither the abundance nor species richness of spiders was related to duration of flooding. 4. The structure of beetle and spider assemblages at sites that were flooded for different lengths of time did not appear to converge monotonically over the 2 years after the flood. 5. Managed flooding promotes diversity of beetles and spiders both by providing conditions that create a ‘pulse’ in populations of hygrophilic specialists in the short term, and by creating subtle, persistent changes in forest‐floor conditions. Despite its monotypic canopy, river red gum floodplain forest is a habitat mosaic generated by differing inundation histories.  相似文献   

19.
Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.  相似文献   

20.
We studied the structure of spider assemblages in fragments of old coniferous forest in the southern Finnish taiga We sampled spiders with pitfall traps in the interiors and in the edges of the old-forest patches and in the surrounding managed forests We surveyed assemblages of ground-dwelling spiders and the relation of species to formerly mentioned three forest-habitat categories We analysed spider assemblages in relation to vegetation structure as well As in forest spiders there are no habitat specialists, no strict old-forest species were found However, the spider assemblages of old forests were different from those in the surrounding managed forests The difference was attributable to habitat differences, mainly to reduced tree-canopy cover in managed forests Large hunting-spider species (Gnaphosidae, Lycosidae) benefitted from clearcutting and other management measures, whereas the catches of small forest-living species (Linyphiidae) decreased in plantations and open forests The hunters colonized the edges of old-forest fragments, and were seldom found in the interior of old forest Size of old-forest fragment did not affect significantly the spider assemblage The results indicate that a buffer zone of mature forest with closed canopy should be left to surround the old-growth reserves in order to minimize the edge effect in the fragments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号