首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent work we have isolated and characterized a highly repetitive DNA (MMV satellite IA) from Muntiacus muntjak vaginalis, the species with the most reduced karyotype in the Cervidae family. We have now analysed the genomes of nine related species for the presence of MMV satellite IA components, and have determined their organization and chromosomal distribution. Repetitive satellite IA type DNA is present in all species of the Cervidae, and also in the bovine, but not in a species of the Tragulidae suggesting that these sequences were generated after the phylogenetic separation of Bovidae and Tragulidae. Studies on the organization of the satellite IA DNA in the various species revealed three main repeat lengths: 1400, 1000 and 807 bp. The relative proportion of satellite IA sequences present in any one of the three registers is strikingly different within the various species and can be correlated with the phylogeny of the Cervidae. The chromosomal locations of the satellite IA sequences were determined in seven species by in situ hybridization. It turned out that the chromosomal rearrangements leading to the reduction in the number of chromosomes during karyotype evolution have led to the elimination of satellite I DNA at most locations. In all tandem fusions, the satellite IA sequences located at the centromeres of the ancestral acrocentric chromosomes are lost. In contrast, during the centric fusion that generates the M. m. vaginalis X chromosome satellite IA sequences are amplified. Sequence motifs, which are known to be involved in recombinational events are present in the satellite IA and might have contributed to the unique karyotype variation in the Cervidae.  相似文献   

2.
Comparative chromosomal analysis is a powerful tool in the investigation of the mechanisms of chromosomal evolution. The accuracy of the analysis depends on the availability of region-specific markers to follow the fate of the particular chromosomal region through the evolution of species. We have assigned 12 unique sequences to the euchromatic part of the vole X chromosome, which serve as reliable markers of chromosomal segments. Together with region-specific libraries and GTG banding, these markers allow us to delineate the homologous regions of the X chromosomes in five species of the genus Microtus. We found that X chromosomes of these species differ by numerous rearrangements and all rearrangements are clustered at specific breakpoints. Moreover, these breakpoints were found to colocalise with repetitive and/or duplicated DNA sequences. We suggest that clusters of repeated and/or duplicated DNA sequences have played a crucial role in the formation of rearrangement hot spots during evolution of the X chromosome in the subgenus Microtus.  相似文献   

3.
The chromosomes of subterranean rodents of the South American genus Ctenomys are highly variable with diploid numbers ranging from 10 to 70. The phylogenetic relationships of this group have been analysed cladistically using G-banded karyotypes as have the chromosomal rearrangements involved in its karyotypic differentiation. One group, called the 'Corrientes group', has very variable chromosomes but low allozymic and morphological differentiation among its members. This group has been analysed with respect to chromosomal speciation. Using a member of another subfamily (Octodontomys gliroides) as an outgroup, the results indicate that karyotypes with low diploid and fundamental numbers are plesiomorphic. The range of diploid numbers studied here is between 22 and 70, while the fundamental numbers are between 40 and 86. It was found that the main chromosomal rearrangement that transforms karyotypes towards higher diploid and fundamental numbers is the acquisition of new chromosomal material via unknown mechanisms, followed by pericentric inversions that generate new chromosomal arms, centric fusions and centric fissions. In spite of their low differentiation regarding allozymic and morphological features, it was found that the karyomorphs of the Corrientes group have enough chromosomal differentiation to consider them as distinct species. Beside the range of diploid and fundamental numbers of this group (42–70 and 80–84 respectively), their pairwise chromosomal differences are high. The most closely related of them differ in one nonhomologous arm, one Robertsonian change and a whole chromosome duplication. The most differentiated taxa differ in 20 arms with lack of homology, 12 Robertsonian changes (one with monobrachial homology), six pericentric inversions and the above mentioned probable arm duplication. For these reasons, it is probable that some kind of chromosomal speciation has occurred in the Corrientes group.  相似文献   

4.
Chromosome conservation in the Bovidae.   总被引:1,自引:0,他引:1  
The chromosomes of 12 bovid species were harvested from fibroblast cultures after incorporation of bromodeoxyuridine into early replicating DNA. Q-band karyotypes were constructed, and, when possible, autosomal arms were numbered according to the cattle standard karyotype. Diploid chromosome number ranged from 30 to 60, yet, based on band similarity, chromosome-arm homologies were extensive. Employing the cattle karyotype as the standard, autosomal-arm differences indicative of possible syntenic disruption were noted for only chromosomes 3, 9, and 14. While chromosome-arm homologies were extensive, shared homologous biarmed chromosomes were rare. The commonness of monobrachially homologous biarmed chromosomes among some bovids (e.g., Antilopinae) suggested that reproductive isolation and speciation in some instances might have resulted from centric fusion events.  相似文献   

5.
近年来,分子细胞遗传学研究已基本证实了染色体的串联融合(端粒-着丝粒融合)是麂属动物核型演化的主要重排方式。尽管染色体串联融合的分子机制还不清楚,但通过染色体的非同源重组,着丝粒区域的卫星DNA被认为可能介导了染色体的融合。以前的研究发现在赤麂和小麂染色体的大部分假定的串联融合位点处存在着非随机分布的卫星DNA。然而在麂属的其他物种中,这些卫星DNA的组成以及在基因组中的分布情况尚未被研究。本研究从黑麂和费氏麂基因组中成功地克隆了4种卫星DNA(BMC5、BM700、BM1.1k和FM700),并分析了这些卫星克隆的特征以及在小麂、黑麂、贡山麂和费氏麂染色体上的定位情况。结果表明,卫星I和IIDNA(BMC5,BM700和FM700)的信号除了分布在这些麂属动物染色体的着丝粒区域外,也间隔地分布在这些物种的染色体臂上。其研究结果为黑麂、费氏麂和贡山麂的染色体核型也是从一个2n=70的共同祖先核型通过一系列的串联融合进化而来的假说提供了直接的证据。  相似文献   

6.
Satellite repeat elements are an abundant component of eukaryotic genomes, but not enough is known about their evolutionary dynamics and their involvement in karyotype and species differentiation. We report the nucleotide sequence, chromosomal localization, and evolutionary dynamics of a repetitive DNA element of the tiger beetle species pair Cicindela maroccana and Cicindela campestris. The element was detected after restriction digest of C. maroccana total genomic DNA with EcoRI as a single band and its multimers on agarose gels. Cloning and sequencing of several isolates revealed a consensus sequence of 383 bp with no internal repeat structure and no detectable similarity to any entry in GenBank. Hybridization of the satellite unit to C. maroccana mitotic and meiotic chromosomes revealed the presence of this repetitive DNA in the centromeres of all chromosomes except the Y chromosome, which exhibited only a very weak signal in its short arm. PCR-based tests for this satellite in related species revealed its presence in the sister species C. campestris, but not in other closely related species. Phylogenetic analysis of PCR products revealed well-supported clades that generally separate copies from each species. Because both species exhibit the multiple X chromosome karyotypic system common to Cicindela, but differ in their X chromosome numbers (four in C. maroccana vs. three in C. campestris), structural differences could also be investigated with regard to the position of satellites in a newly arisen X chromosome. We find the satellite in a centromeric position in all X chromosomes of C. maroccana, suggesting that the origin of the additional X chromosome involves multiple karyotypic rearrangements.  相似文献   

7.
Fluorescent in situ (FISH) and Southern hybridization procedures were used to investigate the chromosomal distribution and genomic organization of the satellite DNA sequence As120a (specific to the A-genome chromosomes of hexaploid oats) in two tetraploid species, Avena barbata and Avena vaviloviana. These species have AB genomes. In situ hybridization of pAs120a to tetraploid oat species revealed elements of this repeated family to be distributed over both arms of 14 of the 28 chromosomes of these species. Genomes A and B were subsequently distinguished, indicating an allopolyploid origin for A. barbata. This was confirmed by assigning the satellited chromosomes to individual genomes, using the satellite itself and two ribosomal probes in simultaneous and sequential in situ hybridization analyses. Differences between A. barbata and A. vaviloviana genomes were also revealed by both FISH and Southern techniques using pAs120a probes. Whereas two B-genome chromosome pairs were found to be involved in intergenomic translocations in A. vaviloviana, FISH detected no intergenomic rearrangements in A. barbata. When using pAs120a as a probe, Southern hybridization also revealed differences in the hybridization patterns of the two genomes. A 1300-bp EcoRV fragment was present in A. barbata but absent in A. vaviloviana. This fragment was also detected in Southern analyses of A-genome diploid and hexaploid oat species. Received: 27 November 2000 / Accepted: 28 February 2001  相似文献   

8.
A. R. Lohe  A. J. Hilliker    P. A. Roberts 《Genetics》1993,134(4):1149-1174
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.  相似文献   

9.
Heterochromatic regions of chromosomes contain highly repetitive, tandemly arranged DNA sequences that undergo very rapid variation compared to unique DNA sequences that are predominantly conserved. In this study the chromosomal basis of speciation has been looked at in terms of repeat sequences. We have hybridized twenty-one chromosome-specific human alphoid satellite DNA probes to metaphase spreads of the chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus) to investigate the evolutionary relationship of heterochromatic regions among such hominoid species. The majority of the probes did not hybridize to their corresponding equivalent chromosome but presented hybridization signals on non-corresponding chromosomes. Such observations suggest that rapid changes may have occurred in the ancestral alphoid satellite DNA sequence, resulting in divergence among the great ape species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The genomic DNA sequences of humans and chimpanzees differ by only 1.24%. Recently, however, substantial differences in gene-expression patterns between the two species have been revealed. In this article, we investigate the genomic distribution of such differences. Besides confirming previous findings about the evolution of sex chromosomes and duplications, we show that chromosomal rearrangements are associated with increased gene-expression differences in the brain and that rearrangements can have both direct and indirect effects on the expression of linked genes. In addition, our results are consistent with a role for some rearrangements in the original speciation events that separated the human and chimpanzee lineages.  相似文献   

11.
The functional and evolutionary significance of highly repetitive, simple sequence (satellite) DNA is analysed by examining available information on the patterns of variation of heterochromatin and cloned satellites among newts (family Salamandridae), and particularly species of the European genus Triturus. This information is used to develop a model linking evolutionary changes in satellite DNAs and chromosome structure. In this model, satellites accumulate initially in large tandem blocks around centromeres of some or all of the chromosomes, mainly by repeated chromosomal exchanges in these regions. Centromeric blocks later become broken up and dispersed by small, random chromosome rearrangements in these regions. They are dispersed first to pericentric locations and then gradually more distally into the chromosome arms and telomeres. Dispersal of a particular satellite is accompanied by changes in sequence structure (for example, base substitutions, deletions, etc.) and a corresponding decrease in its detectability at either the molecular or cytological level. On the basis of this model, observed satellites in newt species may be classified as 'old', 'young', or of 'intermediate' phylogenetic age. The functions and effects of satellite DNA and heterochromatin at the cellular and organismal levels are also discussed. It is suggested that satellite DNA may have an impact on cell proliferation through the effect of late-replicating satellite-rich heterochromatin on the duration of S-phase of the cell cycle. It is argued that even small alterations in cell cycle time due to changes in heterochromatin amount may have magnified effects on organismal growth that may be of adaptive significance.  相似文献   

12.
Analysis of the barley and rice genomes by comparative RFLP linkage mapping   总被引:5,自引:0,他引:5  
Comparative genetic mapping of rice and barley, both major crop species with extensive genetic resources, offers the possibility of uniting two well-established and characterized genetic systems. In the present study, we screened 229 molecular markers and utilized 110 polymorphic orthologous loci to construct comparative maps of the rice and barley genomes. While extensive chromosomal rearrangements, including inversions and intrachromosomal translocations, differentiate the rice and barley genomes, several syntenous chromosomes are evident. Indeed, several chromosomes and chromosome arms appear to share nearly identical gene content and gene order. Seventeen regions of conserved organization were detected, spanning 287 cM (24%) and 321 cM (31%) of the rice and barley genomes, respectively. The results also indicate that most (72%) of the single-copy sequences in barley are also single copy in rice, suggesting that the large barley genome arose by unequal crossing over and amplification of repetitive DNA sequences and not by the duplication of single-copy sequences. Combining these results with those previously reported for comparative analyses of rice and wheat identified nine putatively syntenous chromosomes among barley, wheat and rice. The high degree of gene-order conservation as detected by comparative mapping has astonishing implications for interpreting genetic information among species and for elucidating chromosome evolution and speciation.  相似文献   

13.
Summary The pattern of banding induced by five restriction enzymes in the chromosome complement of chimpanzee, gorilla, and orangutan is described and compared with that of humans. The G banding pattern induced by Hae III was the only feature common to the four species. Although hominid species show almost complete chromosomal homology, the restriction enzyme C banding pattern differed among the species studied. Hinf I did not induce banding in chimpanzee chromosomes, and Rsa I did not elicit banding in chimpanzee and orangutan chromosomes. Equivalent amounts of similar satellite DNA fractions located in homologous chromosomes from different species or in nonhomologous chromosomes from the same species showed different banding patterns with identical restriction enzymes. The great variability in frequency of restriction sites observed between homologous chromosome regions may have resulted from the divergence of primordial sequences changing the frequency of restriction sites for each species and for each chromosomal pair. A total of 30 patterns of banding were found informative for analysis of the hominid geneaalogical tree. Using the principle of maximum parsimony, our data support a branching order in which the chimpanzee is more closely related to the gorilla than to the human.  相似文献   

14.
Human satellite DNAs I, II and IV were transcribed to yield radioactive complementary RNAs (cRNAs). These cRNAs were hybridised to metaphase chromosomes of man, chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orang utan (Pongo pygmaeus). The results of this in situ hybridisation were analysed quantitatively and compared with accepted chromosome homologies based on Giemsa banding patterns. The cRNA to satellite II (cRNAII) did not hybridise to chimpanzee chromosomes, although its hybridisation to chromosomes of gorilla and orang utan yielded more autoradiograph grains than hybridisation to human chromosomes, and cRNAIV hybridised to many chromosomes of gorilla and chimpanzee but was almost entirely restricted to the Y chromosome in orang utan. Most sites of hybridisation were located on homologous chromosomes in all four species, but there were a number of sites which showed no correspondence between satellite DNA location and chromosome banding patterns, and others where a given chromosomal location hybridised with different cRNAs in each species. These results are in contrast to those found for many transcribed DNA sequences, where the same sequence is usually located at homologous chromosome sites in different species, and appear to cast doubt on many proposed models of satellite DNA function.  相似文献   

15.
Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in this and other fungal pathogens.  相似文献   

16.
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, Ictonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements.  相似文献   

17.
Genes for fibronectin, gamma crystallin, and isocitrate dehydrogenase-1 are syntenic in mouse, man, and cow. In an effort to physically locate this conserved chromosome region in the genomes of the respective species, we have localized the fibronectin and gamma crystallin genes to mouse chromosome 1, region C1-5 by in situ hybridization. In situ hybridization was conducted on metaphase chromosomes of bone marrow preparations of Rb 1.7 mice. These cells contain Robertsonian translocated chromosomes 1 and 7 as the only submetacentric chromosome in an otherwise acrocentric genome. Physically mapping these genes to mouse chromosome 1 now enables comparisons of the genetic map and the physical map on the proximal half of this chromosome. Genes in this conserved region of mouse chromosome 1 are also involved in resistance to intracellular pathogens, and the chromosomal localization of this region may facilitate the identification of homologous genes in other species.  相似文献   

18.
The eukaryotic centromere poses an interesting evolutionary paradox: it is a chromatin entity indispensable to precise chromosome segregation in all eukaryotes, yet the DNA at the heart of the centromere is remarkably variable. Its important role of spindle attachment to the kinetochore during meiosis and mitosis notwithstanding, recent studies implicate the centromere as an active player in chromosome evolution and the divergence of species. This is exemplified by centromeric involvement in translocations, fusions, inversions, and centric shifts. Often species are defined karyotypically simply by the position of the centromere on certain chromosomes. Little is known about how the centromere, either as a functioning unit of chromatin or as a specific block of repetitive DNA sequences, acts in the creation of these types of chromosome rearrangements in an evolutionary context. Macropodine marsupials (kangaroos and wallabies) offer unique insights into current theories expositing centromere emergence during karyotypic diversification and speciation.  相似文献   

19.
Characterization and application of soybean YACs to molecular cytogenetics   总被引:3,自引:0,他引:3  
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.  相似文献   

20.
Structural rearrangements of chromosomes have played a decisive role in the karyotypic evolution of species. It is also known that inversions, translocations, fusions, fissions, heterochromatin variations and other chromosomal changes occur as transient events in natural populations. Herein we report the occurrence of a rare event of centric fission of a metacentric chromosome in a laboratory population ofDrosophila, called Cytorace 1. This centric fission has been fixed in a sub-population of Cytorace 1, resulting in a new chromosomal lineage called Fissioncytorace-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号